

1

Starshade Technology Requirements from Exo-S Rendezvous Concept Study

Stuart Shaklan

SSWG Telecon Jan 16, 2016

© 2016 California Institute of Technology. Government Sponsorship Acknowledged..

Starshade Design

• Design a starshade with the following characteristics:

 The following pages explain the interdependencies and show how we arrived at the Dedicated and Rendezvous Designs

The shape of the starshade can be tuned to optimize science and limit complexity.

Starshade Design: Setting the IWA and Limiting Sensitivity

ExoPlanet Exploration Program

ExEP

Figure 4.3-2. Access to sufficient known giant planet candidates, to left of IWA contours, requires 100 mas IWA.

Figure 4.3-3. Access to 50 Earth candidate stars requires $\lim \Delta mag=26$ and IWA=75 mas. Candidates are below contours of $\geq 25\%$ search completeness at varying Δmag .

IWA and limiting sensitivity are selected to enable robust programs in both RV characterization and Earth-twin detection.

Starshade Design: Bandpass/Diameter Trade

ExEP

ExoPlanet Exploration Program

Figure 4.4-1. Starshade dimensions vs. bandpass lower limits. The starshade has: an upper bandpass limit of 1,000 nm, 100 mas IWA, $\lim \Delta mag = 26$, 3.1-m shadow.

Larger instantaneous bandwidth comes from longer petals, larger truss, or both.

Starshade Design: Rendezvous Observing Bandpasses

ExoPlanet Exploration Program

To guide using WFIRST coronagraph instruments – without adding an IR camera – the Starshade must leak blue light while forming a dark shadow in red light.

Figure 11. Bandpass for the Rendezvous mission for three different starshade-telescope distances. When positioned for observation in the red and guiding in the blue (red curve), rejection of 1e-8 is required below ~500 nm.

- Blue: starshade farther from telescope
 - Detection in imaging channel, guiding in IFS
- Red: starshade closer to telescope
 - Characterization on IFS, guiding with imaging channel.
- Implications
 - Starshade designed to have a bandpass
 - Out-of-band rejection requirements on bandpass filters

Starshade-Ready WFIRST Instrument: IFS

ExoPlanet Exploration Program

ExEP

1Kx1K EMCCD 201 1.6K x 1.6K EMCCD 20						
	Coronagraph			Starshade		
λ center	660	770	890	515	725	855
λmin	600	700	810	425	600	706
λ max	720	840	970	600	850	1000
pixels per spectrum	25.2				48.2	
Instantaneous BW	18%				34%	
F#	870				1135	
Lenslet pitch (µm)	164			214		
Samples across PSF	3.4	4.0	4.6	2.8	3.9	4.6
Radial FOV (as)	0.82				1.1	
Spectral resolution	70+/-5				70+/-5	
Magnification	1:1				1:1.23	
Lenslet format	76x76				76x76	
Lenslet array width	11.7 mm			1	15.0 mn	1

- Footprint doesn't change.
- Field is improved
- Bandwidth is improved.
- Larger detector used.

E	Ξx	κE	F	>
	(G)		ς,	•

ExoPlanet Exploration Program

Mask/filte r wheel	SPC (Imagin g)	SPC (IFS)	HLS (Imagin g)	Starshad e (IFS and Imaging)	Baseline Filter Wheel Positions Req'd	Starshade- ready Filter Wheel Positions Req'd
Pupil Mask	1	3	open	open	5	5
Focal Plane Mask	2	9	2	open	14	14
Lyot Mask	1	1	1	open	4	4
Field Stop Mask	open	open	2	open	3	3
Color Filters	2	3	2	open	8	8
IFS/Guide select/dark /pupil	1	1	1	4	5	9

The table shows the number of masks or filters required in each configuration at each location in the optical beamtrain.

In the baseline coronagraph design, the IFS select-wheel houses a mirror and two lenses, matching the three coronagraph set-ups. For Starshade, 4 dichroic filters are needed to select red/green/blue bands for either direct imaging or characterization in 34% spectral bands.

Starshade Ready WFIRST: Formation Flying

An S-Band radio/ranging system is required to communicate with the Starshade. It has been flown on GRAIL.

Table 8.4-4. Telescope S-band subsystem characteristics.

Observing Sequence: Rendezvous Mission

Based on chemical propulsion system

ExoPlanet Exploration Program

Telescope Time Utilized: **9%**. This was a strategic decision to maximize the number of targets while still getting many spectra of giant planets. For the Dedicated mission, telescope utilization is **25%** (Cases 1 and 2).

The program is consistent with low overall utilization of the telescope allowing other science to be performed.

Mission Summary

ExoPlanet Exploration Program

- Mission
 - 3 year mission, 2 years for discovery, 1 year for follow-up
 - L2 orbit
 - Chemical Propulsion
- Sensitivity to Exo-Earth levels.
 - <1e-10 contrast</p>
 - 100 mas in the central band
 - 34% instantaneous bandpass, tunable 425-1000 nm
- Starshade
 - 34 m tip-to-tip diameter
 - Distance 30,000 50,000 km
- WFIRST
 - Utilize WFIRST cameras (no new cameras for starshade)
 - Requires both cameras to be working simultaneously
 - Use no more than 25% of WFIRST time during 2 year discovery mission

Measurement and Mission Requirements

ExoPlanet Exploration Program

Table 8.1-1. Dedicated Mission design requirements

	Rendezvous Mission Requirements			
Measurement Requirements	Starshade	Instrument	Spacecraft & Mission	
Planet contrast sensitivity ≤ 4E-11 (lim∆mag ≥ 26)	Manufacturing and deployment requirements (see Section 6.4) Thermal and structural deformation (see Section 6.4) Sun angle: 28° to 83° off normal (Section	Formation guide camera requirements (Appendix D)	WFIRST/AFTA S/C: Lateral position control: 1 m (Section 6.3.1, Appendix D.4) Starshade S/C: Pointing requirement: 1° 3-σ (see Appendix D.6) Spin rate: 1 rev per 3 min (Section 6.4.2)	
	6.4.6.3) Hole area < 1 cm² (Section 6.4.4)	Detector requirements (see Section 8.4)	Orbit: L2 halo orbit (Section 4.6)	
Planet detection SNR: ≥ 5				
Spectral res (Earths or larger) ≥ R10 Spectral res (sub-Neptunes or larger): ≥ R50 Planet characterization SNR: ≥ 10		IFS requirements (see Section 8.4)		
Total bandpass = 400–1,000 nm	Bandpass: partial (Section 4.4.1)	Bandpass: 400–1000 nm (Section 4.3, 2.3)	Spacecraft separation	
IWA \leq 100 mas	Inner Disk Structure Dia. 20 m Petal Length 7 m Petal #28		distances: 30,000 to 50,000 km (Section 6.1 and Appendix D)	
Spectral res (giants): \geq R70 Planet characterization SNR: \geq 10		IFS requirements Pixel scale: 10	Min mission duration: 2 years	
Planet cross-track position \leq 0.01 AU		mas/pixel (see Section 8.4)	(Section 5.3.3)	
FOV > 10 AU at 10 pc		IFS FOV > 3 asec (Section 8.4.1)		
Measure polarization		0°, 45°		

Technology Drivers

ExoPlanet Exploration Program

Driver	Impact
	Sub-scale demonstration
Contract < 10 10	Validated optical model
Contrast < 1e-10	Petal shape and position
	Formation flying precision
	Limit solar scatter to diffraction from ideal edge
Scatter V<27	Limit reflectivity of telescope-facing surface
	Limit holes from micrometeoroids
Survive Launch	Petal Launch restraint and controlled release

Starshade Driving Technologies

- 1. Contrast performance demonstrations and optical model validation
- 2. Controlling solar glint
- 3. Lateral formation-flying sensing accuracy
- 4. Precision petal fabrication
- 5. Inner disk deployment
 - a. Precision Deployment
 - b. Optical shield
 - c. Thin-film solar cells (Rendezvous Extended Study)
- 6. Petal launch restraint and controlled release

Contrast Performance Demo and Optical Model Validation

ExEP

Contrast Performance Demo and Optical Model Validation

- Requirement:
 - Demonstrate < 1e-9 contrast and suppression in a scaled flight-like geometry (Correct Fresnel Number F~10-15)
- Status:
 - Laboratory experimentation at large Fresnel Number F>100
 - High contrast < 1e-10, poor suppression >10-6
 - The scattered light is highly resolved around the starshade
- Plan:
 - TDEM funding Princeton testbed for proper geometry
 - First results expected mid-2016
- Key challenge: accurately manufacturing the mask with < 0.5 um features.

- Example of Model
 Validation on a defective
- starshade mask on the
- Princeton 11 m testbed.

Kim & Kasdin, 2015

Detailed Starshade Error Budget

ExoPlanet Exploration Program

Table 6.4-1. Modeled starshade error budget terms.

Manufacture/ Deployment	Description
Petal Position	Radial, lateral, in-plane clocking,
	rotation about spine
Segment Shape	0.5, 1, 2, 3, 4, cycle sine and cosine
Segment Placement	Tangential, normal, in-plane clocking
Tip Segment	Radial, azimuthal, in-plane clocking
Placement	
Truss Ellipticity	In-plane elliptical deformation
Petal Shape +	In-plane and out-of-plane bending,
Tip Clip	broken tip
Thermal	Description
Uniform Petal	Petal multiplicative shape change
Expansion	
Uniform Truss	Radially displaces petals
Expansion	
Radial Gradient	Petal base to tip gradient (length and width)
Harmonic Gradient	1, 2, 3, 4, 5 cycles/petal (width only)
Formation Flying	Description
Lateral Displacement	Decentration of telescope from center of shadow
Longitudinal	Position of telescope along line-of-
Displacement	sight to starshade
Other	Description
Solar Glint	Sunlight glinting off of petal edges
Surface Scatter	Earthshine, etc. scattering from
	telescope-facing surface
Holes	Starlight leakage from micrometeoroids

Example local and global perturbation

ExoPlanet Exploration Program

Figure 6.4-1. Example of a local petal perturbation; a 1-m long petal segment is displaced normal to the petal axis. The perturbation is shown enlarged 1000× relative to the displacement in the tolerancing analysis. Axes in the image plane are milliarcseconds. Colors are image plane contrast. Note that the perturbation in a single petal appears off-axis, compared to the on-axis appearance of random amplitude errors distributed amongst the petals

Table 6.4-2. Starshade contrast requirements.

Requirement	Dedicated 1.1 m	Rendezvous 2.4 m
Photometric Floor	5×10-10	1×10 ⁻¹⁰
Systematic Floor	4×10-11	4×10-11

Figure 6.4-3. Overall photometric error budget for the Dedicated and Rendezvous missions.

Solar Edge Glint

ExoPlanet Exploration Program

Figure 9.1-1. Lit-up edge regions. Red symbols indicate where specularly reflected and diffracted sunlight originates. The Sun is 30° into paper at top of figure (60° solar incidence). Units

Figure 9.1-2. Model predictions compared to stainless steel razor blade measurements (not baseline design), for total light diffracted and specularly reflected by the starshade edge.

Requirement: Radius of curvature (in microns) Reflectivity (in %) ROC * Refl < 12

Surface Reflectivity

- Black kapton material
- Measured BRDF of coupons
- Computed net reflectivity at telescope after integrating over petals and conical section of disk.

Table 6.4-5. Apparent magnitude of the telescope-facing side of the starshade when illuminated by astronomical objects.

Source	Worst-Case Apparent Magnitude of Starshade
Jupiter	29.7
Mars	29.7
Venus	31.3
Milky Way	29.6

1 zodi is V=28 in a 0.1 arcsec beam

Figure 6.4-4. Average reflectivity of the starshade for a range of incident angles relative to the starshade normal.

Figure 6.4-5. Starshade illumination from a point source 12° off axis.

Solar Light Leakage

- Micrometeoriods punch holes in the top and bottom surfaces, and through the central layer of foam.
- Sunlight enters the top through the holes, forms a 'bath' of light in the middle, and exits the bottom toward the telescope
- Model of multiple reflections, small leakage, absorption, resembles a lossy optical cavity.

Permissible Hole Area vs. Kapton Reflectance

A plot of hole area vs. Kapton reflectance for $r_F = 0.1$, $t_F = 0.01$, $\alpha = 10$, opaque Kapton, and small hole fraction demonstrating the small, approximately linear response to changes in Kapton reflectance of an optical shield with low-transmittance foam.

Lateral Formation Flying

ExoPlanet Exploration Program

Sensing is the key technology for formation flying.

- Control is not regarded as a key issue:
 - Gravity gradients are small
 - Time constants are long
 - Comparable to lowearth orbit docking

ExoPlanet Exploration Program

3-σ error bounds for petal edge deviations (± 100 µm) Scale: 100 µm

Figure 9.4-2. Measured petal shape error (green arrows) vs. 100 μ m tolerance for 1 \times 10⁻¹⁰ imaging (gray band) shows full compliance with the allocated tolerance.

Table 6.4-4. Comparison of TDEM results with Exo-S requirements.

Key Technology	Demonstra- tion	Achieved Tolerance	Required Tolerance
Petal Segment Shape (Random)	TDEM-09	±45 μm	±68 µm
Petal Segment Position (Random)	TDEM-09	±45 μm	±45 µm
Radial Petal Position (Bias)	TDEM-10	±100 µm	±150 μm

Kasdin TDEM-10 Final Report Kasdin TDEM-11 Final Report

Deployment: Optical Shield

ExoPlanet Exploration Program

Description	Current Capabilities	Needed Capabilities
Demonstrate that a starshade can be autonomously deployed to within its budgeted tolerances after exposure to relevant environments.	Petal deployment tolerance (≤ 1 mm) verified with low fidelity 12m prototype and no optical shield; no environmental testing (Exo-S design).	Demonstrate deployment tolerances are met with flight-like, minimum half-scale inner disk, with simulated petals, optical shield, and interfaces to launch restraint after exposure to relevant environments.

NGAS starshade deployment concept

Recent Activities

- 10m inner disk testbed was completed in 2014.
- 2m testbed completed for demonstrating origami shield designs in 2015.
- TDEM-14 awarded for optical shield design and integration into 10m inner disk testbed (Mark Thomson/JPL).

Petal Launch Restraint and Controlled Launch

ExoPlanet Exploration Program

Description	Current Capabilities	Needed Capabilities
Demonstrate petals deploy without edge contact.	Model simulations predict uncontrolled petal unfurling produces edge contact (Exo-S design).	Full-scale controlled petal deployment mechanism demonstrated to secure petals throughout launch and deploy with no edge contact.

Possible Next Steps to Closing Technology Gap

- Roccor to design and fabricate a full-scale petal unfurling testbed to demonstrate latching and petal interface. (CY16)
 - Petal spines will be full-scale (7m)
 - NGAS to review designs; possible architecture trade
- Roccor funded to upgrade the petal unfurling testbed to demonstrate controlled unfurling of full-scale petals (CY17)

Exo-S unfurling deployment

NG radial boom deployment

Recent Activities

SBIR partner Roccor and JPL produce preliminary design for unfurling and petal restraint mechanisms.

Thin-Film Solar Cells (Enhanced Rendezvous Mission)

ExoPlanet Exploration Program

- Solar Electric Propulsion is an important enhancement to the Rendezvous mission described in the Exo-S report.
 - Enables 5 years of observations
- SEP is TRL-9 (BPT-4000 thrusters).
- We need to generate power without a deployed solar array.
 - Starshade spins
 - Arrays cast shadows resulting in deformation.
- A solution is to integrate solar cells into the starshade.
 - Must not interfere with deployment. Want thin, low mass ceels
- Baseline cell technologies (e.g. 3-junction amorphous silicon) have low efficient, but starshade has ample area.

Summary

- Rendezvous mission science requirements are mapped to technical requirements through detailed error budgets, models, and design reference mission studies.
- The requirements on WFIRST instruments are also understood.
 - Some modifications desired to take full advantage of starshade.
 - Communication/ranging system required. Flight proven, small.
- Much more detailed information is available in the Exo-S report.