Planetary Oblateness, TESS's View of the Solar System

ExoExplorers Talk Series, June 13th 2025

Ben Cassese, w/ David Kipping, Malena Rice, Tiger Lu, Daniel Yahalomi, and Justin Vega

Transiting Exoplanets

Transiting Exoplanets

Solar System w/ TESS

Rotation -> Oblateness

Measure Oblateness -> Constrain rotation

Rotation -> Oblateness

Measure Oblateness -> Constrain rotation

(and obliquity)

time [arbitrary]

time [arbitrary]

time [arbitrary]

https://squishyplanet.readthedocs.io

This illustrates just how flexible models of non-spherical planets can be— depending on the flattening,

But...other things are happening on the limb

But...other things are happening on the limb Need to jointly model oblateness and limb darkening

Quadratic

Can impose priors and fit Inflexible

Non-linear

Must fix, no sensible prior

Flexible

1.000 Teff = 5500Teff = 5600Slight stellar Teff = 5700Teff = 5800uncertainty Teff = 59000.990 Teff = 6000-> 50 Diff. w/ Teff=5500 [ppm] 0 -20 0 0 0 0 different Teff = 5500ingress / Teff = 5600Teff = 5700egress! Teff = 5800Teff = 5900Teff = 6000-22 -6-46 0 4 Time [hours]

Fit coefficients of a model that mimics stellar intensity profile

Fit the stellar intensity profile directly

Coming soon!

	ben-cassese / asterias		Q Type / to sea
<> Code	⊙ Issues 🕄 Pull requests 🕞 Actions 🖽 Projects	🕮 Wiki 🔃 Security 🗠 Insights 🗔 Settings	
	asterias Public	S Pi	n 💿 Unwatch 2
		Q Go to file T Add file T	<> Code -
	en-cassese untested full runthrough	117e083 · 3 weeks ag	o 🕚 4 Commits
	docs	initial commit	last month
	src/asterias	untested full runthrough	3 weeks ago
	🗋 .gitignore	initial commit	last month
	.pre-commit-config.yaml	initial commit	last month
	.python-version	initial commit	last month

Transit Fit, usual params

Transit Fit, usual params

But now stellar props. as well

Completely different conclusions w/ different limb darkening prescriptions!

• Choice of limb darkening dramatically affects oblateness inference

- Choice of limb darkening dramatically affects oblateness inference
- squishyplanet = package for arbitrary order polynomial limb darkening transits of oblate planets

- Choice of limb darkening dramatically affects oblateness inference
- squishyplanet = package for arbitrary order polynomial limb darkening transits of oblate planets
- asterias = package for on-the-fly stellar intensity profiles/coefficients (coming soon)

TESS's View of the Solar System

1) Light curve contamination

Asteroids are ubiquitous in the ecliptic plane

Asteroids are ubiquitous in the ecliptic plane

Target-by-target, how do they affect transient searches?

Simulate where all the asteroids are at every time

Simulate where all the asteroids are at every time

Generate mock images

Simulate where all the asteroids are at every time

Generate mock images

> 50% of T>13 targets are contaminated > 1%

2) TESS as an Engine for TNO Discovery

Gladman & Kavelaars 1996 Holman, Payne, & Pál 2019 Rice & Laughlin 2020

name: 62_1_3_origin_128_512_13 peak pix significance: 6.29 x_shift / 27 days: 105.0 y_shift / 27 days: 3.0 x_loc (+/- ~3 days): 197 y_loc (+/- ~3 days): 602 RA: 166.4529 Dec: -2.4913 nearest known obj: (620088) nearest known pix dist: 3.75 known obj shift / sec dur: 96.77, -1.54 nearest known mag: 22.748

best-ever frame

500 -

450 -

400 -

350 -

300 -

250

300

350

400

450

- All ecliptic TICs are affected by SSOs
 - And T>13 TICs especially so

- All ecliptic TICs are affected by SSOs
 - And T>13 TICs especially so
- TESS has discovered one confirmed TNO, dozens of candidates

Summary

- Choice of limb darkening dramatically affects oblateness inference
- squishyplanet = package for arbitrary order polynomial limb darkening transits of oblate planets
- asterias = package for on-the-fly stellar intensity profiles/coefficients (coming soon)

- All ecliptic TICs are affected by SSOs
 And T>13 TICs especially so
- TESS has discovered one confirmed TNO, dozens of candidates

Extra figures

Neptune-Sized Planet

