Using Orbital Phase and Atmospheric Composition to Discriminate Reflected Light Observations of Exoplanets

Samantha Hasler

PhD Candidate, Massachusetts Institute of Technology ExoExplorers Science Series 6.13.2025

STAR lab

Collaborators: L. Pogorelyuk, K. Cahoy, R. Morgan, R. Fitzgerald, L. Mayorga, W. Grundy, A. Simon, and The New Horizons Planetary Theme Team

Outline

Introduction

Part I: Leveraging Exoplanet Orbital Phase and Color for Deconfusion

Part 2: High Phase Angle Observations of Uranus

Summary

Outline

Introduction

Part I: Leveraging Exoplanet Orbital Phase and Color for Deconfusion

Part 2: High Phase Angle Observations of Uranus

Summary

Looking toward future direct imaging missions

Roman Space Telescope

Extremely Large Telescope(s)

Habitable Worlds Observatory

Object	Contrast	Angular separation @ 10 pc
Earth	~2x10 ⁻¹⁰	0.1"
Jupiter	~1.4x10 ⁻⁹	0.5"

Observing Instrument	Contrast	Inner Working Angle
*Gemini Planet Imager	10 ⁻⁷	0.2"-1.0"
Thirty Meter Telescope	10 ⁻⁸	0.03"
Roman CGI	10 ⁻⁷ -10 ⁻⁹	0.15"
HabEx CG	10 ⁻¹⁰	0.062"

*For context; currently operational

Future direct imaging missions will enable exciting science and face new challenges

- * Reach potentially habitable planets
- * Shorter orbital periods
- May complicate observation scheduling
 - More planets
 - Missed detections
 - False positives
 - Lack of precursor observations

Habitable Exoplanet Observatory Final Report 2019, G. Ruane

Exoplanets can only ever be imaged at partial phase angles

Outline

Introduction

Part I: Leveraging Exoplanet Orbital Phase and Color for Deconfusion

Part 2: High Phase Angle Observations of Uranus

Summary

Which detection corresponds to which planet?

Possible orbits #2

The confusion problem

Pogorelyuk et al. 2022

Detections of 2 planets, each shape corresponds to time of detection

Assisting deconfusion with photometry Define star. planet, detector properties Top ranked orbit Refined orbit fit for the system rankings Simulate detections' coordinates & No confusion phase/brightness 3D grid Calculate Obtain ranking All possible Detections Add Multiply Detections' Confusion search predicted likelihood detections' relative orbits w/in grouped detector phase/brightness per likelihoods astrometry tolerance by orbit properties orbital given orbits detection parameters **Deconfuser 1.0 Photometry Ranking Deconfuser 2.0** Hasler et al. (in review)

Incorporating photometry from orbit fits

Hasler et al. (in review)

Orbit-ranking with photometry

Photon distribution

$$P(N=k) = \frac{n_p^k e^{-n_p}}{k!}$$

Probability of measuring n_p photons

 $f(y|n_p(a,e,i,\Omega,\omega,M_0)))$

Likelihood of measuring all detections

$$\prod_{j=1}^{Z} f(y_j | n_{p,j}(a_j, e_j, i_j, \Omega_j, \omega_j, M_{0,j})))$$

Ν

Expected number of photons

 $n_p(a, e, i, \Omega, \omega, M_0) = \phi_p(a, e, i, \Omega, \omega, M_0) \cdot \Delta t + d$

Variables

N = number of photons measured k = number of occurrences n_p = expected number of photons $(a, e, i, \Omega, \omega, M_0)$ = orbital parameters ϕ_p = photon flux Δt = observation time d = background y = measured photon count Z = number of measurements

Log Likelihood Function

$$\sum_{j=1}^{n} [y_j \cdot \ln(n_{p,j}(a_j, e_j, i_j, \Omega_j, \omega_j, M_{0,j})) - n_{p,j}(a_j, e_j, i_j, \Omega_j, \omega_j, M_{0,j}) - \ln(y_j!)]$$

Hasler et al. (in review)

Example of deconfusion with photometry

Hasler et al. *(in review)*

Example of deconfusion with photometry

Hasler et al. (in review)

Hasler et al. (in review)

Outline

Introduction

Part I: Leveraging Exoplanet Orbital Phase and Color for Deconfusion

Part 2: High Phase Angle Observations of Uranus

Summary

Motivation: Ice-giants are not well understood, and exoplanets of similar size are common

High phase angle observations of the giant planets are inaccessible from Earth

- Previous observations of Uranus and Neptune from Voyager 2 flyby in 1986 and 1989
 - Left major questions about differences between the ice giants
- New Horizons spacecraft currently > 61 AU from Sun
 - · Launched 2006
 - Pluto flyby in 2015
 - Unique vantage point for high phase observations

NASA, ESA, C. Nieves (STScI), R. Crawford (STScI), G. Bacon (STScI)

Simultaneous observations with HST/WFC3

HST OPAL (Thanks to Amy Simon!)

3-color maps of Uranus

Rotation 1

Rotation 2

Hasler et al. 2024

Complementary observations from ground-based community observers

Thanks to Susan Benecchi!

S. Hasler (MIT) · shasler@mit.edu

21

Methods: Data reduction and photometry

Uranus I/F vs. sub-spacecraft longitude

= 2023 observations
= 2019 observations

NH/MVIC observations compared to Uranus' spectrum

What does this mean for exoplanet observations?

What does this mean for exoplanet observations?

We need to understand atmospheric scattering in these near-quadrature phase angle regimes

Interpretation of our observations will require sophisticated modeling

Fainter exoplanets will require more sensitive instruments/longer integration times for detection and characterization

Outline

Introduction

Part I: Leveraging Exoplanet Orbital Phase and Color for Deconfusion

Part 2: High Phase Angle Observations of Uranus

Summary

*Ringed exoplanets and bonus science!

Feasibility of imaging a ringed exoplanet with Roman

5.2 AU Jupiter @ 15 pc

Saturn at α = 90°, rings inclined by 20°

> 30% increase in reflectance with rings

Hasler et al. (in prep)

Uncovering unknown minor solar system bodies

GPU-based framework for detecting small Solar system bodies in targeted exoplanet surveys

A. Y. Burdanov, * S. N. Hasler* and J. de Wit*

Burdanov, de Wit, et al. 2025

Small body harvest with the Antarctic Search for Transiting Exoplanets (ASTEP) project

S. N. Hasler⁹, ¹* A. Y. Burdanov,¹ J. de Wit,¹ G. Dransfield⁹,² L. Abe,³ A. Agabi,³ P. Bendjoya,³ N. Crouzet,⁴ T. Guillot,³ D. Mékarnia,³ F. X. Schmider,³ O. Suarez³ and A. H. M. J. Triaud⁹2

Hasler et al. 2023

Summary

Part 1: Deconfusion

Contact 🗠 shasler@mit.edu Info

@sammyhasler snhasler.gitub.io

The deconfuser:

- (0)Quickly fits orbits to astrometric detections of planets in 2D images
 - Decides which assignment of detection-to-planet fits the data best

Analysis shows photometry to be useful for deconfusion (Hasler+ under review)

Part 2: Uranus at High Phase by New Horizons

We must use Solar System planets as "ground-truth" observations for exoplanet direct imaging

Uranus is dimmer than predicted by a Lambertian phase function at high phase

*Interested in exoplanet phase studies, direct imaging, or Solar System analogs for exoplanet research? Please reach out!

