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Overview
1. Introduction to photoionization-driven 

atmospheric escape

2. Wind-AE 1D relaxation model

3. The limits of energy-limited mass loss rates

4. Wind-AE and observables
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Three Regimes of Atmospheric Escape Mass Loss for Close-in Planets

1. Boil-off 
2. Core-powered mass loss 
3. Photoionization-driven (a.k.a., photoevaporation)  

a. Especially strong around young stars, which are X-ray + Extreme 
UV (XUV) active

b. Ongoing throughout planet’s life

c. Can drive observable outflows

4

= P<100 days
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Photoionization-driven Parker Wind
EUV photons (10 to ~100 eV) = enough energy to ionize

X-ray photons (~100 eV to 1 keV)
= enough energy to ionize x2

XUV 
photons can 
penetrate 
deeper* .

Atmo can’t cool 
efficiently at 
those depths, so 
heating drives 
outflow.

*STILL UPPER LAYERS OF ATMOSPHERE
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Photoionization-driven Parker Wind 

Pressure 
gradient 
drives a

transonic 
“Parker 
Wind”

NOT driven by Teff, but  
heating due to 

photoionization

Tail of outflowing, 
ionized  gas
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Period Radius Valley Photoevaporative (Neptune) Desert

Brande et al. 2024
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Period Radius Valley Photoevaporative (Neptune) Desert

Mass loss is a part of the evolutionary history of 
close-in (P<100 days) planets

Brande et al. 2024
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Cannot directly observe mass loss rates, only infer from models 
Lyman-ɑ emission line broadening Metstable He 10830Å Transit

10
Vidal-Madjar & Lecavelier (2004) Spake et al. 2021
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Existing Tools
Late Times (a few Gyrs): Photoionization is EUV dominated , energy limited b/c low flux  
(García-Muñoz, 2007; Murray-Clay et al. 2009)

Single frequency/Pure-H/no diffusion, no X-rays

Early Times (Myrs): X-ray dominated , radiative limited and recombination limited b/c high 
flux (Cecchi-Pestellini, 2006; Owen & Jackson, 2012)

Assumps. (like ionization equi.) are only valid in high flux limit or for high densities

Other fast codes  have limiting assumptions (Owen & Jackson 2012), don’t solve for Ṁ 
(p-winds, Dos Santos et al. 2021), or have limited metallicity (ATES, Caldiroli et al. 2021)

Time-evolving, 3D hydrodynamic codes are considerably slower codes  

11
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1. Mass loss is a part of the evolutionary history of 
close-in (P<100 days) planets

2. Can’t directly observe mass loss rates, only infer 
from models 
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Overview
1. Introduction to photoionization-driven 

atmospheric escape

2. Wind-AE 1D relaxation model

3. The limits of energy-limited mass loss rates

4. Wind-AE and observables
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Mass loss rate

14

Sonic point 
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A 1D, multifrequency, multispecies, 
hydrodynamic, transonic Parker Wind, 

steady-state photoionization relaxation code 
based on Murray-Clay et al. (2009)

15

Wind-AE

NOW
 with METALS 

& X-rays!
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Important physics:
X-rays and Metals
● Young hot stars strong in the 

XUV

● Metals have large X-ray 
ionization cross sections 

16

Throngren et al. 2016
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Important physics:
X-rays and Metals
● Young hot stars strong in the 

XUV

● Metals have large X-ray 
ionization cross sections 

● Planets likely high metallicity

● Metals in outflows may be 
observable

17

Throngren et al. 2016
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Limitations
Non-time evolving

No diffusion or drag

No magnetic fields

Assumptions only valid up to Coriolis (turning) radius

19
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RP

RHill

R(𝛕
XUV =1)

20

Wind launch radius ( R
XUV )
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RP

RHill

R(𝛕
XUV =1)

21

Wind launch radius
Rμbar

Relaxation 
Code Solves: 
(For Ṁ, only concerned 
with this region)

Rsp

ODE integrator 
solves
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RP

RHill

Advective Heating = Ioniz. heating 
   + Line emission (Ly-ɑ, OI, OII, OIII, CI, CII) 
   + PdV work 
   + Recombination

Bolometric = Bolometric
 

Rs

R(𝛕
XUV =1)

Energy Conservation

+ H3+ ???

Molecular

Atomic

22

Wind launch radius
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Overview
1. Introduction to photoionization-driven 

atmospheric escape

2. Wind-AE 1D relaxation model

3. The limits of energy-limited mass loss rates

4. Wind-AE and observables
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Energy Limited Mass Loss Rates
Assumes some fraction, 𝜀, of incident photon energy is converted into outflowing:

* (times a tidal correction term)

24
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Energy Limited Mass Loss Rates
Typically, R, is taken to be Rp  and 𝜀 is 0.15-0.4 in the literature 

* (times a tidal correction term)

25
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But where is the energy really absorbed?

26
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Where is the XUV 
energy absorbed?

Quintessential system:

Planet: HD 209458b (Hot 
Jupiter)

Star: Old (low flux)

Atmo: H, He

27
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Where is the XUV 
energy absorbed?

Quintessential system:

Planet: HD 209458b (Hot 
Jupiter)

Star: Old (low flux)

Atmo: H, He
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Features of a wind that affect observables

Lyman-ɑ emission line broadening Metstable He 10830Å Transit

29
Vidal-Madjar & Lecavelier (2004) Spake et al. 2021

Velocity  

Ionization  
fraction

Ionization  
fraction

Temperature
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So, when is it appropriate to use the energy limited 
mass loss rate?

31
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Energy Limited Mass Loss Rates
Typically, R, is taken to be Rp  and 𝜀 is 0.15-0.4 in the literature 

* (times a tidal correction term)
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Mass loss rate grids - H/He atmospheres
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Mass loss rate grids - H/He atmospheres

“Energy-limited” “Recombination-limited”

Radiative line cooling (e.g., 
Lyman-𝛼) cooling efficient

More energy = 
more mass loss
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ṀElimit(RP,𝜀) overestimates  & ṀElimit(RP,𝜀) underestimates                
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ṀElimit(RP,𝜀) underestimates  & ṀElimit(RP,𝜀) overestimates                

Dramatically 
underestimates 
superearths / sub 
Neptunes

Overestimates large 
Hot Jupiters
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𝜀 = 0.24 (superearths) - 0.37 (HJs)

37

ṀElimit(RXUV,𝜀) overestimates  & ṀElimit(RXUV,𝜀) underestimates                
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Overview
1. Introduction to photoionization-driven 

atmospheric escape

2. Wind-AE 1D relaxation model

3. The limits of energy-limited mass loss rates

4. Wind-AE and observables
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Confirming WASP-12b H𝛂 
surprising non-detection
(Pai-Asnodkar et al. 2024)

39

Superearths TOI-776b,c are 
losing H, not H20 atmos   
(Parke et al. 2025)
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Conclusions
1. XUV radiation photoionizes atmospheres of close-in planets 

driving observable outflows.
2. Wind structure and Ṁ sensitive to inclusion of X-rays & metals.

3. At low fluxes ṀElimit(RXUV) is more accurate than ṀElimit(Rp).

4. ṀElimit(Rp) dramatically underestimates mass loss for superearths and 
overestimates for large Hot Jupiters. (OK for typical HJs)

5. Outflowing metals may explain HD 189733b’s unusually deep X-ray transit.

6. Future: High metallicity grids

40
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github.com/mibroome/wind-ae
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Extra Slides
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RP

RHill

Rs

R(𝛕XUV=1)

Ionization Balance

Photoion. Rate Recombo. Rate Advect. away rate

42
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X-ray Considerations
X-rays ionize certain species’ K-shells 
(innermost shell) instead of outermost shell, 
meaning a much  larger ionization cross 
section, 𝜎 

X-ray photons carry much higher energy than 
ionization energy (>100 eV relative to 13.6 eV 
to ionize H)

Leftover energy in photon can be used to 
ionize another species OR to heat

43
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1 solar mass, 1 solar luminosity, H, He

45
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Boundary Conditions
Sonic Point

Column Density

RP

Mass density, Temperature, Ionization fraction
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Agnostic boundary conditions (only depend on Lbolo and pressure)
Lower BCs

47
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What do tides do?

49
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Before Photoevaporation 

1% Mcore

0.9% 
Mcore

t = 1 Myr

FOR A 
FIXED CORE 
MASS

mailto:mabroome@ucsc.edu


     Madelyn Broome (mabroome@ucsc.edu)               -              Fast 1D Atmo. Escape Model w/ Metals & X-rays                        -           52

After Photoevaporation

1% Mcore

0% Mcore

2.5 R Earth

1.3 R Earth

t = 100 Myr

FOR A 
FIXED CORE 
MASS
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Other possibilities
Period-Radius Valley (a.k.a., Fulton 
Gap)

● Core masses may have 
underlying mass distribution 
that contributes to 
atmospheric fraction and size 
differences (Lee et al. 2022)

● Core powered mass loss 
(Gupta & Schlichting, 2022)

● Water worlds (Luque, 2022)
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Other possibilities
Photoevaporative (Neptune) Desert

● Photoevaporation can’t clear 
the top of the desert 
(Vissapragada et al. 2022)

● Top maybe: Tidal disruption 
barrier for gas giants 
undergoing high-eccentricity 
migration (Owen & Lai, 
2018)
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Spherical Obscuration Fraction

Tau is slant path optical depth, where we assume the cross section is photoionization 
cross section.
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