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‭​1.​ Introduction, Background‬

‭This milestone is aimed at advancing the self-calibrating high contrast imaging (SC-HCI)‬

‭concept. In a SC-HCI system, unwanted starlight is accurately and precisely measured, so that‬

‭it can then be reliably identified and subtracted from science data (images or spectra) to‬

‭unambiguously reveal the faint planet light. The technique aims at achieving detection limits set‬

‭by photon noise instead of speckle noise.‬

‭To realize this goal, the HCI system must be designed to support wavefront sensing using‬

‭starlight, operating simultaneously with science data acquisition.‬

‭The self-calibrating property will benefit exoplanet-imaging missions in four interconnected‬

‭ways:‬

‭1.‬ ‭Provides improved detection limits, approaching or reaching the photon-noise limit.‬

‭2.‬ ‭Offers immunity from speckle noise which often sets the detection limit of  HCI systems.‬

‭3.‬ ‭Improves observing efficiency by relaxing the need for off-target PSF reference‬

‭acquisitions. Does not require science data acquisition interruptions for wavefront‬

‭control.‬

‭4.‬ ‭Can relax telescope stability and instrument raw contrast requirements.‬

‭The photon noise limit may not necessarily be due to residual stellar light, as other terms‬

‭(exozodi light especially) may dominate in some cases. Ensuring that residual stellar light only‬

‭contributes as photon noise would enable optimizations associated with increased stellar light,‬

‭such as broader spectral band, smaller inner-working angle and  higher coronagraph‬

‭throughput.‬

‭In the first milestone of this project, we seek to demonstrate post-processing calibration of high‬

‭contrast images with a >10x gain over conventional PSF subtraction approaches.‬

‭​2.​ Milestone Description and Rationale‬

‭The milestone definition is as follows:‬

‭Rationale‬‭: The 10x ratio will bring a significant‬‭gain in exoplanet imaging, and can also relax‬

‭some of the most challenging optics stability requirements imposed on high contrast imaging‬

‭systems. Demonstrating that residual speckles can be calibrated and subtracted will relax the‬

‭mission raw contrast requirement, allowing for the tradeoff between the starlight suppression‬

‭performance characteristics (raw contrast, inner-working angle, sensitivity to low-order‬

‭aberration, throughput, spectral bandwidth) to be revisited. For example, maintaining deep raw‬
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‭contrast becomes challenging in broader spectral bands, so relaxing the raw contrast‬

‭requirement allows for a wider spectral band to be used for science acquisition.‬

‭​2.1.​ Relevance to Exoplanet Imaging and Spectroscopy‬

‭In a Sun-Earth system analog, the planet-to-star contrast in reflected light flux is ~1.5e-10.‬

‭Achieving this deep contrast remains very challenging, placing tight requirements on wavefront‬

‭stability. Two noise terms can set the contrast detection limit: photon noise and speckle noise.‬

‭Reliable high signal-to-noise ratio requires pushing these noise terms ~10x below the planet flux‬

‭level. Photon-noise, being temporally uncorrelated, is reduced by increasing the total exposure‬

‭time. Speckle noise, originating from wavefront error (static and dynamic) can be mitigated by‬

‭either wavefront control, or by calibration. This milestone will focus on the latter approach, also‬

‭referred to as post-processing.‬

‭The most commonly used post-processing techniques are to compare the science frame(s) with‬

‭PSF reference frame(s); we refer to this approach as standard PSF subtraction in this document‬

‭(see‬‭Reference subtraction‬‭section for algorithm description).‬‭The reference PSF can be either‬

‭acquired on a target other than the science target (reference differential imaging - RDI), or can‬

‭be the science target observed at a different rotation angle (angular differential imaging - ADI).‬

‭In both approaches, the post-processing residual is limited by wavefront variations between the‬

‭science and reference frames, placing tight constraints on wavefront stability.‬

‭In this milestone, we will demonstrate a 10x gain in post-processing residual compared to‬

‭standard PSF subtraction, in the regime where wavefront changes are setting the contrast limit‬

‭in post-processing residuals. The comparison between the two approaches will be done by‬

‭using the same dataset for both techniques.‬

‭In this milestone, we will reach a 1e-9 post-processed contrast residual and focus on‬

‭demonstrating the algorithm. The 1e-9 residual is approximately two orders of magnitude short‬

‭of the ~1e-11 residual noise level required for observing Earth-like planets around Sun-like‬

‭stars. We will push the contrast residual toward 1e-11 in subsequent milestones.‬

‭​2.2.​ Milestone requirements‬

‭Scoring region‬

‭Contrast shall be evaluated in the‬‭scoring region‬‭,‬‭an area of at least 10 sq-λ/D. This will keep‬

‭experimental runs short, as the corresponding number of modes (~20) can be fully probed with‬

‭a moderate number of wavefront realizations.‬

‭Wavelength range‬

‭The wavelength shall be within the 400 nm to 1700 nm range, in accordance with testbed‬

‭capabilities and future envisioned coronagraph instruments on space telescope(s). The primary‬

‭experimental setup for this milestone will operate in visible light (<780nm) in vacuum, with‬

‭supporting in-air testbed extending to the nearIR (up to 1700 nm).‬
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‭Wavefront aberrations will be injected‬

‭Each frame corresponds to an independent, static injected wavefront error (WFE), and consists‬

‭of a high contrast (HC) frame and a wavefront sensor (WFS) frame (both with the same injected‬

‭WFE). A frame may be a coadd of multiple camera reads, as needed to reach the required‬

‭measurement SNR.‬

‭Each injected WFE realization will be a random linear superposition of WF modes. The modes‬

‭shall provide full coverage of spatial frequencies within the scoring region, in both phase and‬

‭amplitude. With a 10 sq-λ/D scoring region, there will be 20 independent modes (one cosine‬

‭and one sine per spatial frequency).‬

‭Number of frames = 100 or more‬

‭The observation set shall consist of at least 100 consecutive frames. The WFS and HC data‬

‭acquisition cameras/sensors may be running asynchronously, with the WFS camera acquiring‬

‭data at higher frequency than the HC camera. In this case, a frame corresponds to a time‬

‭interval defined by one or a few HC camera exposures; the HC frame is the average of these‬

‭exposures, and the corresponding WFS frame will be constructed by averaging all WFS camera‬

‭exposures acquired over this time interval.‬

‭Number of successful demonstrations = 3 or more‬

‭The milestone requirements shall be met on at least 3 separate datasets.‬

‭Photometric efficiency‬

‭Data calibration by reference subtraction or other techniques incurs a cost in‬‭photometric‬

‭efficiency‬‭(defined later in this whitepaper). There‬‭is a tradeoff between optimizing calibration‬

‭accuracy and preserving photometric efficiency. We require >25% photometric efficiency,‬

‭equivalent to a < 2x increase in noise level.‬

‭​2.3.​ Definitions and Framework‬

‭The milestone’s goal is to demonstrate that‬‭self-calibration‬‭brings a >10x contrast‬

‭improvement over a standard‬‭reference subtraction‬‭approach.‬

‭Notations, definitions and data processing framework are summarized in Fig. 1 and used‬

‭throughout this document.‬
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‭​2.3.1.​ Input data‬

‭●‬ ‭A‬‭frame‬‭refers to all data taken during a time interval‬‭over which WF aberrations are‬

‭considered static. Frame numbers start at 0 and are incremented over time.‬

‭●‬ ‭A high contrast‬‭HC frame‬‭is a measured focal plane‬‭high contrast image corresponding‬

‭to a single WF state (no WF change introduced during frame).‬

‭●‬ ‭A wavefront sensing‬‭WFS frame‬‭is the corresponding‬‭wavefront sensor image, ideally‬

‭acquired simultaneously with the science frame.‬

‭●‬ ‭The‬‭observation set‬‭consists of at least 100 consecutive‬‭pairs of HC/WFS frames.‬

‭●‬ ‭The‬‭reference set‬‭consists of frames that are distinct‬‭from the observation set, and‬

‭consist of an arbitrary number of frames.‬

‭Example input data measurement sequence:‬

‭300 consecutive frames are acquired, each consisting of a science frame and a WFS frame.‬

‭Frames 0-99 and 200-299 are the reference set, and frames 100-199 are the observation set.‬

‭Splitting the reference set in two continuous sequences, one before and one after the‬

‭observation set, helps ensure that long-term drifts are adequately captured.‬

‭6‬



‭​2.3.2.​ Reference subtraction‬

‭The reference subtraction approach (lower part of figure 1) does not use WFS information and‬

‭serves as a baseline against which the contrast improvement is measured. It is similar to‬

‭reference differential imaging (RDI) approaches commonly used in high contrast imaging.‬

‭We define reference subtraction as follows:‬

‭●‬ ‭All HC frames within the reference set are averaged. The result is the‬‭reference HC‬

‭image‬

‭●‬ ‭All HC frames within the observation set are averaged. The result is the‬‭observation HC‬

‭image‬

‭●‬ ‭The‬‭reference HC image‬‭is subtracted from the‬‭observation‬‭HC image‬‭. The result is‬

‭the‬‭reference-subtracted HC image‬

‭​2.3.3.​ Self-calibration‬

‭Self-calibration, developed here, uses WFS information to enhance calibration of high contrast‬

‭images.‬

‭The steps to self-calibration (upper/right part of figure 1) are as follows:‬

‭●‬ ‭A‬‭mapping function‬‭from WFS frames to HC frames is‬‭derived (learned) from the‬

‭reference set frames. This mapping allows for a WFS frame to be transformed to a‬

‭corresponding HC frame. The mapping function is analogous to a lookup table, but is in‬

‭practice encoded in modal space for efficiency (see Fig. 5).‬

‭●‬ ‭For each frame in the observation set, the‬‭reconstructed‬‭HC frame‬‭is computed solely‬

‭from the WFS frame, by running the mapping function on the WFC frame. The mapping‬

‭function also returns uncertainties (modal error bars).‬

‭●‬ ‭The‬‭observation reconstructed HC image‬‭is computed‬‭as a linear combination of‬

‭reconstructed HC frames. The coefficients to the linear combination are derived from‬

‭reconstruction uncertainties, so that poorly constrained information is weighted down.‬

‭●‬ ‭The‬‭observation combined HC image‬‭is computed as the‬‭same linear combination‬

‭applied to the observation set HC frames‬

‭●‬ ‭The observation reconstructed HC image is subtracted from the observation HC‬

‭combined image. The result is the‬‭self-calibrated‬‭HC image‬‭.‬

‭​2.3.4.​ Contrast measurements‬

‭●‬ ‭The‬‭frame raw contrast value‬‭(scalar for each frame)‬‭is the average surface brightness‬

‭in the scoring area of the HC frame, normalized to the unocculted PSF core surface‬

‭brightness.‬

‭The following two contrast quantities are measured on the post-processed images, which are‬

‭meant to be free of starlight. These are root-mean square (RMS) quantities as they measure the‬

‭a residual starlight component that could be zero-mean:‬

‭●‬ ‭The‬‭self-calibrated HC image contrast residual value‬‭(scalar) is the root-mean square‬

‭(RMS) of the self-calibrated HC image, computed over the scoring area.‬
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‭●‬ ‭The‬‭reference-subtracted HC image contrast residual value‬‭(scalar) is the root-mean‬

‭square (RMS) of the reference-subtracted HC image, computed over the scoring area.‬

‭The following gain quantity is derived from the contrast residual values:‬

‭●‬ ‭The‬‭self-calibration post-processing gain‬‭(scalar)‬‭is the ratio of the two quantities‬

‭above. It is >1 if self-calibration outperforms reference subtraction.‬

‭For the milestone to be achieved, the self-calibrated HC image contrast residual value‬

‭must be <1e-9, and the self-calibration post-processing gain must be >10x.‬

‭​2.3.5.​ Photometric efficiency‬

‭Calibration techniques involving image subtraction can amplify the photon and readout noise‬

‭terms beyond  the noise level expected by simply averaging all HC frames in the observation‬

‭set.‬

‭To illustrate this effect, we consider a weighted average of a set of N frames I‬‭0‬‭, I‬‭1‬‭, … I‬‭N-1‬‭:‬

‭I‬‭s‬ ‭= a‬‭0‬ ‭I‬‭0‬ ‭+ a‬‭1‬ ‭I‬‭1‬ ‭+ … a‬‭N-1‬ ‭I‬‭N-1‬

‭With:‬

‭a‬‭0‬ ‭+ a‬‭1‬ ‭+ … a‬‭N-1‬‭= 1‬

‭We assume that each frame I‬‭i‬‭has the same noise level‬‭𝞂 (standard deviation).‬

‭The noise level in the average image is:‬

‭𝞂‬‭s‬ ‭= C‬‭𝞂‬

‭with: C= (a‬‭0‬

‭2‬
‭+ a‬‭1‬

‭2‬
‭+ … a‬‭N-1‬

‭2‬
‭)‬
‭½‬

‭C is minimal and equal to C‬‭min‬‭=1/N‬
‭1/2‬

‭for:‬

‭a‬‭0‬ ‭= a‬‭1‬ ‭= …= a‬‭N-1‬‭= 1/N‬

‭corresponding to a straight average of all input frames (equal weights). Non-equal weights yield‬

‭C>C‬‭min‬ ‭(noise amplification).‬

‭This effect is quantified here as a‬‭photometric efficiency‬‭(C‬‭min‬‭/C)‬
‭2‬
‭, which measures the‬

‭equivalent fractional efficiency in exposure time. A 10% photometric efficiency means that the‬

‭final (after processing) noise level is equivalent to averaging only 10% of the observation time.‬

‭The photometric efficiency is optimal with the reference subtraction approach, for which it is‬

‭50% if the reference set has the same number of frames as the observation set (noise is‬

‭amplified by sqrt(2) by the subtraction, equivalent to halfing the observation time).‬

‭Photon and readout noise will be propagated through the self-calibration algorithm to compute‬

‭its photometric efficiency.‬
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‭​2.3.6.​ HC/WFS frame synchronization‬

‭Our proposed approach requires pairs of HC and WFS frames corresponding to the same‬

‭wavefront error. This is ensured by synchronization between the HC and WFS frames. The raw‬

‭camera frames are not assumed to be synchronized, and the HC camera operates at a slower‬

‭frame rate than the WFS camera due to significantly lower flux level. The first step to our‬

‭algorithm is to create synchronized HC/WFS frames from non-synchronized HC/WFS raw‬

‭camera images, as described in Fig. 2. This is done by defining each frame as a time interval‬

‭consisting of a number of consecutive HC camera frames (2 for the example shown in Figure 2),‬

‭and binning WFS camera frames according to this timing. WFS camera frames falling in‬

‭between time intervals may be split between the two frames (as shown in Figure 2), or allocated‬

‭to the nearest frame (this solution is acceptable if the WFS camera exposure is significantly‬

‭shorter than the frame duration).‬

‭​3.​ Experimental Setup‬

‭This milestone will be demonstrated at the High Contrast Imaging Testbed Facility (HCIT) at the‬

‭NASA Jet Propulsion Laboratory (JPL), on a coronagraph testbed which will use a‬

‭Dual-Purpose Focal Plane Mask (DPFPM). The DPFPM combines the ability to perform high‬

‭contrast imaging using a Lyot-style focal plane mask (FPM) and wavefront sensing using a‬

‭Zernike wavefront sensor (Ruane et al, 2020, Wallace et al, 2023). The DPFPM enables both‬
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‭without the need to physically insert or remove masks into or out-of the optical path when‬

‭performing either task, allowing each task to be performed asynchronously.‬

‭A simplified and unfolded optical path of a coronagraph with a DPFPM is shown in Figure 3.‬

‭Coherent light is focused onto a pinhole, which acts as a simulated star, then propagates to a‬

‭series of off-axis parabolas (OAPs). The‬‭first‬‭OAP‬‭forms a pupil plane where the first‬

‭deformable mirror (DM) is located. A second DM is located shortly after the first DM at a‬

‭non-pupil plane. The fourth OAP then focuses the light on the DPFPM.‬

‭The DPFPM design, shown in Figure 4, uses a dichroic coating on the focal plane mask‬

‭substrate to separate the science band (620-700 nm) and the sensing band light (500-550 nm).‬

‭Science band light is occulted by the Lyot-style focal plane mask. Any remaining science band‬

‭light is transmitted by the DPFPM and propagates to a series of off-axis parabolas, a Lyot stop,‬

‭a field stop, and finally is imaged onto the science camera.‬

‭Light from the sensing band is reflected from the dichroic coating of the DPFPM. The phase‬

‭dimple is used to convert wavefront variations in the sensing band into intensity variations in the‬

‭pupil plane where the wavefront sensing camera is then located (Steves et al, 2020). Thanks to‬

‭this approach, no additional focal plane wavefront sensing optics is needed.‬

‭The Zernike wavefront acts in the focal plane and senses in the pupil plane. In the focal plane‬

‭are two regions that are phase shifted with respect to one another. The central region has a‬

‭diameter of roughly 2 lambda/D, and has an optical path - or phase shift - of lambda/4. This is‬

‭called ‘the dimple’. It is worth noting that this dimple is physically quite small and pancake‬

‭shaped. Typical dimensions are a diameter of ~ 20 to 30 um, and a depth of ~ 300 to 400 nm.‬

‭The on-axis light that is focused in this plane (the point spread function or PSF for short) is‬

‭centered on this dimple. The part of the light that passes through this dimple is phase-shifted‬

‭and it diffracts as if it is passing through a small pinhole of the same diameter. This light is called‬
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‭the reference beam. The light passing around this dimple is otherwise unaffected. As the light‬

‭propagates away from the focal plane, the reference beam light expands and starts to overlap‬

‭the light that passes by the dimple.  In the subsequent pupil plane, the beam overlap is nearly‬

‭complete (some reference light falls outside geometric pupil aperture).  Because these beams‬

‭overlap, and are coherent, they interfere with one another thereby creating an intensity‬

‭modulation, or fringe pattern. The phase shift on the reference beam makes the response of the‬

‭fringe intensity straightforward - pupil phase errors that are greater than the mean result in a‬

‭brighter signal. Likewise, phase errors less than the mean result in a dimmer fainter signal.The‬

‭spatial frequencies in the pupil plane are only limited by the number of detector pixels across‬

‭the pupil.  For the dual purpose mask, the wavefront sensing light - between 500 and 550 nm -‬

‭is much shorter than the science band (625 to 700 nm). The dichroic coating on the substrate‬

‭acts as a mirror in the wavefront sensing band, and it acts like a window for the science light in‬

‭transmission. Thus, we capture all spatial frequencies that are reflected from the focal plane..‬

‭If we detect any cross-talk between the two bands, we can mitigate it by inserting a longpass‬

‭filter, which blocks wavelengths less than 600 nm, before the science camera and insert a‬

‭shortpass filter, which blocks wavelengths greater than 600 nm, before the sensing camera.‬
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‭We propose a setup to take advantage of DPFPM while eliminating the need for any physical‬

‭insertion or removal of optics during the science and wavefront sensing exposures. Figure 5‬

‭shows the setup which allows both the science and sensing bands to be measured‬

‭simultaneously and asynchronously. The broadband tunable laser would generate the science‬

‭band and a dedicated narrowband laser generates light within the sensing band. The science‬

‭and sensing bands are combined in a wavelength division multiplexer (WDM). Unlike a‬

‭traditional fiber splitter, a WDM can support both bands with over 50% throughput.‬

‭By measuring the wavefront and performing high contrast science imaging (or spectroscopy),‬

‭we ensure no WF evolution between WF measurements and PSF acquisitions. This is the‬

‭configuration envisioned for on-orbit science data collection, when exposure time is precious,‬

‭especially for exoplanet spectroscopy. Our demonstration will help define the optimal‬

‭architecture to spread light between science and WF sensing.‬

‭To achieve deep raw contrast, the coronagraph testbed is housed inside a vacuum chamber‬

‭and placed on vibration isolation devices, called Minus-Ks, to reduce uncontrollable dynamic‬

‭wavefront error during the process of establishing the region of high contrast. The coronagraph‬

‭is installed on a carbon fiber optical table and covered in multi-layer insulation to improve‬

‭thermal stability. Using the DPFPM, the coronagraph testbed has demonstrated (Wallace et al.‬

‭2024) raw contrast levels of 10^-9 Normalized Intensity (NI) by using Pairwise Probing (PWP)‬

‭and Electric Field Conjugation (EFC). While the formal report on these results is still under‬

‭preparation by the Wallace SAT team, we provide a preview in Fig. 6. The first generation of the‬

‭Dual Purpose Lyot Coronagraph focal phase mask achieved a mean normalized intensity of‬

‭4×10‬
‭-10‬

‭in a 10% bandwidth centered at 650nm.‬
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‭​4.​ Algorithm Description‬

‭The main steps to the algorithm are:‬
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‭1.‬ ‭Building a mapping function between WFS frames and HC frames from the reference set‬

‭2.‬ ‭Computing, for each WFS frame, a reconstructed HC frame‬

‭3.‬ ‭Computing the‬‭reconstructed HC image‬‭by linear combination‬‭of the reconstructed HC‬

‭frames‬

‭4.‬ ‭Computing the‬‭observation HC image‬‭by running the‬‭exact same linear combination on‬

‭the input observation HC frames‬

‭5.‬ ‭Subtracting the reconstructed HC image from the observation HC image‬

‭The two most delicate steps to the algorithm are building the mapping function (step #1) and‬

‭choosing the linear coefficients for steps #3 and #4. These involve tradeoffs that affect the‬

‭accuracy, reliability and photometric efficiency.‬

‭​4.1.​ Mapping function‬

‭The mapping function takes as an input a WFS frame and computes the corresponding‬

‭estimated HC frame. There are two main concepts behind this step: performing linear-quadratic‬

‭(linQ) modal extrapolation, and enforcing locality to ensure the model reliability.‬

‭​4.1.1.​ Efficient extrapolation with the linQ model‬

‭The linQ modal extrapolation (Fig. 7) assumes that WFS frames are responding linearly to small‬

‭wavefront perturbations, while HC frames respond quadratically to the same wavefront‬

‭perturbations. The linQ approach was validated in the Linear Wavefront Control PSF calibration‬

‭milestone demonstration (Guyon et al. 2024).‬

‭Its main steps are:‬
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‭1.‬ ‭Identify dominant modes of variation (principal components)  in the set of‬‭WFS frames‬‭.‬

‭These are the‬‭WFS modes‬‭. Each WFS frame is then represented as a vector of modal‬

‭coefficients. The full set of reference frames is stored in the‬‭LIN coeffs‬‭matrix.‬

‭2.‬ ‭Quadratically expand the WFS frame vectors: append the vector with squares and‬

‭products of its coefficients. The full set of reference vectors is stored in the‬‭QUAD coeffs‬

‭matrix.‬

‭3.‬ ‭Solve for the HC modes by multiplication of the‬‭HC‬‭frames‬‭with the pseudo-inverse of‬

‭the‬‭QUAD coeffs‬‭matrix.‬

‭.‬

‭The mapping function is encoded by the set of input (WFS) modes and the set of the output‬

‭(HC) modes. Reconstructing a HC frame is done by:‬

‭1.‬ ‭Projection of the input WFS frame onto the WFS modal basis. The input WFS frame is‬

‭then represented as a vector‬

‭2.‬ ‭Performing the quadratic expansion of the above WFS vector‬

‭3.‬ ‭Expanding the output vector to a reconstructed HC frame by multiplying by the HC‬

‭modes‬

‭The linQ modal extrapolation is efficient: the mapping from WFS to HC frames can be‬

‭constrained with a relatively small number of frames thanks to the strong linear-quadratic model‬

‭constraint.‬

‭​4.1.2.​ Enforcing Locality‬

‭The linear-quadratic relationship underlying the linQ approach is a local approximation. With‬

‭sufficiently large WF changes, the WFS frame response is no longer linear. Locality constraints‬

‭must be checked and enforced to prevent unreliable extrapolations beyond the WFS linearity‬

‭domain.‬

‭When processing an observation WFS frame, locality must be enforced by first checking and‬

‭possibly selecting the reference WFS frames that are most similar (smallest euclidean distance)‬

‭to the observation WFS frame. The linQ algorithm may then operate on this smaller, but more‬

‭local, subset of frames. A distance-based clustering algorithm will be run on the set of WFS‬

‭frames to define the subset of frames to be included in the reconstruction. The subset will be the‬

‭largest cluster of frames within the WFS linearity domain. It may include all input frames if the‬

‭input disturbances are small, or may reject outliers. If frames are rejected, the photometric‬

‭efficiency (included in the milestone definition) will be reduced.‬

‭We will explore running independent linQ reconstructions on separate clusters of WFS frames‬

‭as a way to mitigate loss of WFS linearity. This partitioning step may be required to meet the‬

‭milestone photometric efficiency requirement.‬

‭​4.2.​ Linear Combination & Photometric Efficiency‬
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‭The reconstructed HC frames are linearly combined to produce the final reconstructed HC‬

‭image. This linear combination is not an average, as the reconstructed HC frames vary in noise‬

‭level and reconstruction robustness: the most reliable and lowest noise reconstructed frames‬

‭are given higher weight. Favoring the most reliable reconstructed frames however comes at a‬

‭cost in photometric efficiency.‬

‭To illustrate this tradeoff, as an example, we can consider a search for a close match between a‬

‭set of M=1000 reference frames and M=1000 observation frames. An exhaustive search‬

‭through the 1e6 possible reference/observation pairs would reveal the –most likely excellent–‬

‭closest match between reference and observation WFS frames. All other frames would be‬

‭discarded, yielding excellent calibration accuracy, but with poor photometric efficiency (0.05%).‬

‭We note that the occurrence of lucky pairs of matching WFS frames between the observation‬

‭and reference sets is significantly more likely than the occurrence of a lucky imaging instance,‬

‭as the number of pairs is M^2, providing ~M x more opportunities for matches than for lucky‬

‭imaging (see Appendix for details). Yet, in high-dimension space, relying on lucky matches‬

‭alone is not sufficient to ensure high photometric efficiency, and the lin-Q model is required for‬

‭efficiency. Our goal is to maintain high photometric efficiency while providing an accurate HC‬

‭image reconstruction.‬

‭​5.​ Supporting Activities and Future Work‬

‭Algorithms will be validated and exercised on two air testbeds: the Subaru Coronagraphic‬

‭Extreme Adaptive Optics (SCExAO) and Magellan MagAO-X extreme adaptive optics systems.‬

‭Both systems are configured to operate as in-air laboratory testbeds as well as on-sky‬

‭instruments, and share the same software infrastructure. While they operate at more moderate‬

‭contrast than required for this milestone, they provide greater flexibility, faster turn-around time,‬

‭and a wider range of optical sensors/cameras options. Specifically, the lin-Q mapping algorithm‬

‭and optimal linear combination techniques at the core of our proposed approach are being‬

‭tested on datasets we acquire on SCExAO and MagAO-X systems. The fast turn-around time‬

‭for experiments (~minutes) is especially valuable, as experimental parameters (for example:‬

‭amplitude and dimensionality of input disturbances, wavelength bandwidth choices) can be‬

‭tested and scanned.‬

‭A number of issues that could adversely affect the reconstruction accuracy are not addressed‬

‭this in milestone:‬

‭●‬ ‭Temporal variations within each frame‬

‭●‬ ‭Low flux level in both HC and WFS frames‬

‭●‬ ‭Dissimilarity between reference and observation sets. The two sets may sample‬

‭non-overlapping distributions of wavefront errors.‬

‭These will be addressed in future work and milestones.‬

‭A limitation of MS#1 is that the set of perturbations injected by DM actuation may not be‬

‭representative of the full set of disturbances in a complete optical system including the‬

‭instrument’s upstream optics and telescope. In parallel with in-vacuum testing at JPL, we will‬
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‭deploy and validate our algorithms on datasets acquired in-air and on-sky with HCI systems‬

‭operating at a much shallower contrast level. This will help validate that our approach can‬

‭handle a wide range of perturbations in a realistic environment.‬
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‭Appendix: Probabilistic Considerations in PSF Subtraction‬

‭Our approach to PSF subtraction relies on matching observation frames to reference frames, so‬

‭that for most of the observation frames, a reasonably good subtraction can be done. The quality‬

‭of the subtraction relies on a combination of luck (is/are there reference frame(s) that is/are‬

‭similar to the observation frame?) and extrapolation (how well can we extrapolate from‬

‭reference frames an observation frame that has not been encountered in the reference set). We‬

‭discuss here how the probability of lucky matches scales with the number of dimensions and the‬

‭number of samples. This probability is related to the PSF subtraction’s photometric efficiency (=‬

‭fraction of the dataset that contributes to the final PSF-subtracted science image). We represent‬

‭each frame as a multidimensional variable, with each dimension encoding a wavefront mode.‬

‭We compare here the “‬‭lucky matching‬‭” probability (having a match between reference and‬

‭observation frames) to the more familiar “‬‭lucky imaging‬‭” case (probability that a frame is good).‬
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‭Both concepts can be expressed as a tradeoff between quality and photometric efficiency,‬

‭where a fraction of the data is discarded to ensure the remaining frames meet a threshold.‬

‭For simplicity, we assume that the multidimensional points encoding frames sample the same‬

‭zero-mean distribution (uniform distribution from -1 to +1 along each dimension), for both the‬

‭reference and observation sets, with no correlation between the dimensions.‬

‭Lucky Imaging‬

‭The probability of obtaining a diffraction-limited short exposure image through atmospheric‬

‭turbulence was quantified by Fried (“Probability of getting a lucky short-exposure image through‬

‭turbulence”, Fried, JOSA, 1978). A similar approach can be applied here.‬

‭Assuming N modes (number of dimension), each with uniform distribution (from -1 to +1), the‬

‭probability that a point lands within a radius r of origin follows the N-ball volume equation.‬

‭[eq A1]‬‭𝑃‬(‭𝑟‬)‭ ‬= ‭ ‬‭𝛑‬
‭𝑁‬‭/2‬

‭ ‬‭/‬‭ ‬‭𝞒‬(‭𝑁‬‭/2‬+ ‭1‬)‭ ‬‭ ‬(‭𝑟‬‭/2‬)
‭𝑁‬

‭With M samples, the number of points within r of the origin is thus M P(r)‬

‭Lucky Matching‬

‭For PSF subtraction, in the context of our approach, a closely related concept is the probability‬

‭that two frames (one drawn from the reference set, one from the observation set) are within a‬

‭distance r of each other. With M points in N dimensions for the reference and observation sets,‬

‭there are M^2 pairs of (reference,observation) points, with the difference between the two points‬

‭uniformly distributed in a r=2 hypercube. The probability that this difference is less than r is‬

‭, with P(r) from equation A1.‬‭𝑃‬(‭𝑟‬)‭/‬‭2‬
‭𝑁‬

‭With‬ ‭pairs, the number of such matching pairs is‬ ‭so any point in the observing set‬‭𝑀‬
‭2‬

‭ ‬ ‭𝑀‬
‭2‬

‭𝑃‬(‭𝑟‬)‭/‬‭2‬
‭𝑁‬

‭has a probability of having a match in the reference set:‬

‭[eq A2]‬‭𝑃𝑀‬(‭𝑟‬)‭ ‬= ‭ ‬‭𝑀‬‭/‬‭2‬
‭𝑁‬

‭ ‬‭𝑃‬(‭𝑟‬)

‭Comparing equations A1 and A2, we draw the following conclusions:‬

‭●‬ ‭The photometric efficiency of both lucky imaging and lucky matching decreases steeply‬

‭with the number of dimensions N‬

‭●‬ ‭While the photometric efficiency of lucky imaging is independent of the number of‬

‭samples M, the photometric efficiency of lucky matching increases with the number of‬

‭samples‬

‭For example, with M=1e6 samples in N=8 dimensions, and r=0.2, we have P(r)~4.1e-8, so the‬

‭expected number of lucky samples are:‬

‭Lucky imaging: M P(r) = 0.04‬

‭Lucky matching: M (M/2^N P(r)) = 158‬

‭In this example, there is a 4% probability of finding a single lucky imaging frame in the sample of‬

‭one million points, while the expected number of observation samples having a match in the‬

‭reference set is 158. While the lucky matching efficiency is much higher than the lucky imaging‬

‭efficiency, it is still too small (photometric efficiency ~ 1.6e-4) to be useful, highlighting the need‬

‭for local fitting (lin-Q model) which is analogous to extending the matching radius.‬
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