This work is published in AJ!

STRONGER TOGETHER: EXPANDING ATMOSPHERIC INFERENCE CAPABILITIES BY COMBINING GROUND-BASED AND JWST SPECTRA

ExoPAG ExoExplorers Series, 7 March, 2025

+

 \mathbf{O}

Peter Smith, Michael Line, Jacob Bean, Matteo Brogi, Prune August, Luis Welbanks, Jean-Michel Desert, Jonathan Lunine, Jorge Sanchez, Megan Weiner Mansfield, Lorenzo Pino, Emily Rauscher, Eliza Kempton, Joseph Zalesky, and Martin Fowler

Protoplanetary Disk Cross Section

Pontoppidan² 2019

Protoplanetary Disk Cross Section

Pontoppidan[‡] 2019

Protoplanetary Disk Cross Section

Pontoppidan[‡] 2019

More planets, more problems

- The exoplanet population is much more diverse and varied than our own solar system
- Our solar system is atypical, posing fundamental questions about planet formation and evolution (e.g., hot Jupiters, sub-Neptunes, tidal locking)
- Fortunately, we can use the diversity of the exoplanet population to systematically fill in these knowledge gaps by studying their atmospheres

Tying Composition to Formation

- A planet's formation conditions and migration history imprint themselves on its atmospheric composition
- Composition measurements help place the planet back to its origins and allows us to test formation theories
- Major goal of exoplanet science: fill out this plot!→
- This requires good measurements of *multiple* elemental inventories and ratios in exoplanet atmospheres

Climate and Energy

- Climate and atmospheric dynamics tells us how energy is transported around the planet
- Close in, tidally locked planets (such as TRAPPIST-1 planets) have poor, non-uniform heat redistribution
- The shape of the vertical thermal structure (the P-T profile) is shaped by the efficiency of heat redistribution
- We want to know the physical mechanisms that govern this efficiency

Figs. From Madhusudhan 2019

Spectroscopy of Exoplanets

Spectroscopy of Exoplanets

Figures from Coulombe+ 2023

Figures from Coulombe+ 2023

2) Measure eclipse depth in each **wavelength channel**

3) Eclipse Depth or Brightness Temperature **Spectrum**

Figures from Coulombe+ 2023

1) Take spectra over time and **detrend**

0.35

-150

-100

-50

0

Line-of-Sight Velocity [km s⁻¹]

0.75

0.50

0.25

0.00

Corelation Coefficient

Closs-0.50

-0.75

1.00

100

150

50

Radial Velocity

Orbital Phase

 $V_{sys} [km \ s^{-1}]$

A Choice: Ground- or Space-based spectroscopy?

- Space:
 - No tellurics
 - Yes continuum (temp.)
 - Low resolution
- Ground
 - Tellurics ☺
 - No continuum?
 - High resolution
- Intuition: space good for P-T profile/climate, ground good for composition?

HIGH-AND LOW-RESOLUTION + **SPECTROSCOPY HAVE** COMPLEMENTARY 0 **INFORMATION – DO THEM** BOTH

0

WASP-77A b

- Line+ 2021 showed capability of high res retrievals w/ IGRINS (R~45K)
- Was able to measure P-T profile and a low metallicity
- Later JWST/NIRSpec (R~250, August+ 2023) confirmed low metallicity

Gemini South – 8.1 m IGRINS – R =45K JWST – 6.5 m NIRSpec – R=2700, data binned to R~250

The two data types predict each other well

Test Case: WASP-77A b confirms intuition

 $\log_{10}(n_{\rm CO}) = -3.81^{+0.17}_{-0.17}$

 $\log_{10}(n_{\rm H_2O}) = -3.98^{+0.11}_{-0.09}$

Test Case: WASP-77A b confirms intuition

Test Case: WASP-77A b confirms intuition

Reduced uncertainty in P-T profile reduces uncertainty in gas abundances

Reduced uncertainty in P-T profile reduces uncertainty in gas abundances

Improvements not just due to increased wavelength coverage

Improvements not just due to increased wavelength coverage

Deciding what's best for your science

The future: climate and dynamics

- Wind speeds, dynamics, and thermal structure are intrinsically, physically linked, so measuring one will help constrain the other
- Such complementary data sets already exist – e.g., WASP-121 b

All Gases	$K_{\rm P} = 215.28$	$^{+0.35}_{-0.34}$ dV _{sys} =	$= 1.19^{+0.19}_{-0.19}$
H ₂ O Only	$K_{\rm P} = 218.49$	$^{+0.66}_{-0.58}$ dV _{sys} =	$= 1.54^{+0.38}_{-0.34}$
CO Only	$K_{\rm P} = 213.72$	$^{+0.50}_{-0.50}$ $dV_{\rm sys}$ =	$= 1.52^{+0.30}_{-0.29}$
OH Only	$K_{\rm P} = 214.84$	$^{+0.69}_{-0.62}$ dV _{sys} =	$-0.54^{+0.39}_{-0.37}$
²²¹		,	·]
220			~ -
219		$ \leq (\land \land$	\langle / \rangle
<u> </u>		$\neg \langle \lor$	
S 217			··/-····
<u>لک</u> 216			-
⊻ ₂₁₅	$\langle (\bigcirc $		
214		MO) >-
213			
212	2 -1 () 1	2 3
	dV_s	$k_{\rm vs}$ [km s ⁻¹]	

•

0

The future: peering above the clouds

- High res infamously struggles with placing the continuum and absolute abundances
- Low res infamously thwarted by high altitude clouds
- Using both can be a powerful method for bypassing both of these shortcomings as high res can probe low pressures while low res can identify the true transit depth

From Gandhi+ 2020

SUMMARY

- Studying exoplanet atmospheres are the key to solving outstanding questions in planetary science
 - High and low resolution spectroscopy are sensitive to different information and have complementary strengths and weaknesses
 - Combining the two can provide a more complete and precise view of an atmosphere than from either method individually

petercbsmith@asu.edu petercbsmith.github.io @ExoplanetPete

