Organosulfur Chemistry in the Birthplaces of Stars and Planets

Suchitra Narayanan

NSF Graduate Research Fellow & PEO Scholar

Advised by Karin I. Öberg & Jonathan P. Williams Center for Astrophysics | Harvard & Smithsonian Institute for Astronomy, University of Hawai'i at Mānoa

ExoPAG 31, 245th Meeting of the AAS \cdot 12 January 2025

suchitra.narayanan@cfa.harvard.edu

(Astro)biology

sulfur is present in amino acids, proteins, lipids (even primordial Earth's genetic alphabet!)

suchitra.narayanan@cfa.harvard.edu

(Astro)biology

sulfur is present in amino acids, proteins, lipids (even primordial Earth's genetic alphabet!)

Planetary habitability

origins of life as we know it require the presence of S-bearing organics (+ nitriles) in prebiotic conditions

...but we can't account for ~95% of the Universe's S budget

suchitra.narayanan@cfa.harvard.edu

(Astro)biology

sulfur is present in amino acids, proteins, lipids (even primordial Earth's genetic alphabet!)

Planetary habitability

origins of life as we know it require the presence of S-bearing organics (+ nitriles) in prebiotic conditions

...but we can't account for ~95% of the Universe's S budget \rightarrow called the "missing sulfur problem" since the 1990s

suchitra.narayanan@cfa.harvard.edu

(Astro)biology

sulfur is present in amino acids, proteins, lipids (even primordial Earth's genetic alphabet!)

Planetary habitability

origins of life as we know it require the presence of S-bearing organics (+ nitriles) in prebiotic conditions

How can we understand sulfur if it's hard to observe?

Theoretical modelers leverage the periodic table

Theoretical modelers leverage the periodic table

Same-group elements have identical # of valence electrons

suchitra.narayanan@cfa.harvard.edu

Same-group elements have identical # of valence electrons

suchitra.narayanan@cfa.harvard.edu

Valence electrons are responsible for an element's reactivity

Same-group elements have identical # of valence electrons

suchitra.narayanan@cfa.harvard.edu

Valence electrons are responsible for an element's reactivity

We can infer how sulfur- \Rightarrow bearing molecules form using their oxygen analogs

suchitra.narayanan@cfa.harvard.edu

The most updated astrochemical model predicts most of the "missing" sulfur to be locked in ices, namely organosulfurs (Laas + Caselli 2019)

The most updated astrochemical model predicts most of the "missing" sulfur to be locked in ices, namely organosulfurs (Laas + Caselli 2019)

suchitra.narayanan@cfa.harvard.edu

A sulfur compound containing a C-H bond

The most updated astrochemical model predicts most of the "missing" sulfur to be locked in ices, namely organosulfurs (Laas + Caselli 2019) A sulfur compound

"Simplest" complex organosulfur: methyl mercaptan

suchitra.narayanan@cfa.harvard.edu

containing a C-H bond

The most updated astrochemical model predicts most of the "missing" sulfur to be locked in ices, namely organosulfurs (Laas + Caselli 2019) A sulfur compound

"Simplest" complex organosulfur: methyl mercaptan

Analogous to its well-understood counterpart, methanol

suchitra.narayanan@cfa.harvard.edu

containing a C-H bond

CH₃SH (methyl mercaptan) has been detected towards

Image credits: Rogelio B. Andreo/ESO/ESA

CH₃SH (methyl mercaptan) has been detected towards

Image credits: Rogelio B. Andreo/ESO/ESA

suchitra.narayanan@cfa.harvard.edu

To understand whether organosulfurs are a possible sulfur sink, we must empirically characterize its fundamental astrochemical properties

1. When is CH₃SH in its gas or ice phase?

Molecules condense out as a function of R_{disk} (or T_{disk})... Higher T_{disk} Lower T_{disk}

...forming snow lines which represent the ice-gas boundary

H₂O SNOW LINE

suchitra.narayanan@cfa.harvard.edu

VOLATILE SNOW LINE

However, realistic ices are mixtures of H₂O + other volatiles

H₂O SNOW LINE

suchitra.narayanan@cfa.harvard.edu

VOLATILE SNOW LINE

However, realistic ices are mixtures of H₂O + other volatiles

ENTRAPPED VOLATILES (see e.g. Simon+ 2019 & 2023) **REALISTIC H₂O SNOW LINE**

suchitra.narayanan@cfa.harvard.edu

PURE VOLATILE SNOW LINE

2 & 3. How is CH₃SH formed and destroyed?

suchitra.narayanan@cfa.harvard.edu

Ices can be processed through interaction with UV photons inducing chemical reactions

suchitra.narayanan@cfa.harvard.edu

Ices can be processed through interaction with UV photons inducing chemical reactions

How do we simulate disk conditions in the laboratory? Ultra-high vacuum chambers (we have 4 in the Öberg Astrochemistry Lab at CfA!)

suchitra.narayanan@cfa.harvard.edu

How do we simulate disk conditions in the laboratory? Ultra-high vacuum chambers (we have 4 in the Öberg Astrochemistry Lab at CfA!)

suchitra.narayanan@cfa.harvard.edu

How do we simulate disk conditions in the laboratory? Ultra-high vacuum chambers (we have 4 in the Öberg Astrochemistry Lab at CfA!)

SIMPLEST

suchitra.narayanan@cfa.harvard.edu

MOST COMPLEX

Brief experimental procedure

suchitra.narayanan@cfa.harvard.edu

Full specs in Simon+ 2023.

We first get to low T, low P

CLOSED CYCLE HE CRYOSTAT → GETS DOWN TO 10 K AND 10⁻¹⁰ Torr.

suchitra.narayanan@cfa.harvard.edu

OUR ATMOSPHERE IS 760 Torr...

Introduce molecules into chamber

suchitra.narayanan@cfa.harvard.edu

DOSER THAT CONNECTS TO A GAS LINE WHERE WE MIX OUR REACTANTS (i.e. CH₃SH, H₂O, CH₃OH)

Form ices on an infrared (IR) inactive substrate

We can process the ice thermally

We can also process the ice via irradiation

suchitra.narayanan@cfa.harvard.edu

OTHER WAYS INCLUDE ELECTRON OR ATOM BOMBARDMENT AND LASERS.

Data product 1: IR spectra \rightarrow characterize ice phase

Data product 1: IR spectra \rightarrow characterize ice phase

suchitra.narayanan@cfa.harvard.edu

CAN COMPARE LAB + JWST SPECTRA TO UNDERSTAND ICE COMPOSITION

(see Berger + 2024)

Data product 2: mass spectra \rightarrow characterize gas phase

Data product 2: mass spectra \rightarrow characterize gas phase

All results are from Narayanan+, ApJ, in review

All results are from Narayanan+, ApJ, in review

\Rightarrow CH₃SH is indifferent to whether it binds to itself or to water; CH₃OH interacts with water significantly

 \Rightarrow CH₃SH is indifferent to whether it binds to itself or to water; CH₃OH interacts with water significantly

We can infer that CH₃SH snow line would be further out than CH₃OH's

(computed this quantitatively... can chat later)

CH₃OH

pure

CO2

pure

suchitra.narayanan@cfa.harvard.edu

desorption 00 water

crystallization

desorption 00

suchitra.narayanan@cfa.harvard.edu

In all entrapment experiments that were not CH₃SH-rich we see <u>100% entrapment</u> that has never been seen before.

suchitra.narayanan@cfa.harvard.edu

In all entrapment experiments that were not CH₃SH-rich we see 100% entrapment that has never been seen before.

⇒ CH₃SH's size inhibits its ability to diffuse through the water matrix.

suchitra.narayanan@cfa.harvard.edu

suchitra narayanan@cfa haryard edu

If prebiotic molecules larger than CH₃SH form with water, we would would expect it to be available at very high concentrations at the water snow line where planets can overcome the meter—sized barrier

If prebiotic molecules larger than CH₃SH form with water, we would would expect it to be available at very high concentrations at the water snow line where planets can overcome the meter—sized barrier

If prebiotic molecules larger than CH₃SH form with water, we would would expect it to be available at very high concentrations at the water snow line where planets can overcome the meter—sized barrier

→ We likely are severely underestimating the inventory of volatiles/organics close in the inner disk and thereby what goes into forming planets...

If prebiotic molecules larger than CH₃SH form with water, we would would expect it to be available at very high concentrations at the water snow line where planets can overcome the meter—sized barrier

→ We likely are severely underestimating the inventory of volatiles/organics close in the inner disk and thereby what goes into forming planets...

(Spoiler: my formation and destruction experiments also show that S vs. O chemistry is fundamentally different)

*If interested in more details, **my dissertation talk is Mon. 13 Jan, 3:10 pm** at YSO II / happy to chat over this week!

Appendix

• •

CH₃SH is destroyed rapidly when exposed to same amount of UV photons

Characterizing CH3SH formation via H2S+CH4 e- irr

Fiducial experiment: 300 ML,1:5 (H₂S:CH₄), irradiation at 10 K for 120 mins ($\approx 5 \times 10^{18} \text{ eV/cm}^2$)

- Confirm **CH₃SH is forming** based on TPD data following irradiation
 - T_{des} matches literature value even with isotopic substitution (¹³CH₄)
- Analogous to CH₃OH formation from CH₄ and H₂O (relative rates are still being quantified)
- Note these are done in CH₄-dominated ices
- We form a lot of S₂ and S₃...

A-2

Not very efficient though...

- We use isotopic substitution for proof of concept
 - H_2S+CH_4 (thicker line) and $H_2S+{}^{13}CH_4$ (thinner line)
 - Use the typical m/z values corresponding to CH₃SH fragmentation
- Further confirm this is indeed CH₃SH by taking the the mass spectrum at the desorption temperature (120 K) and compare to NIST's

Increase in production of 46/47 corresponds to build up of H₂CS and H₂¹³CS

• Means the H₂CS seen in disks is likely formed in the gas phase just like H₂CO

Why aren't there many sulfur experiments? Sulfur dirties the substrate pretty badly :(

Binding energies (BE) \rightarrow proxy for sublimation fronts Experimentally-derived binding energies are necessary for astrochemical models

- well described using the Polanyi-Wigner equation

A-5

Estimating E_b and ν

- Degeneracy between the two
 - Empirical fit
 - Harmonic approximation

$$\nu_{\rm harm} = \sqrt{\frac{2N_s E_{b,\,\rm harm}}{\pi^2 \mu m_{\rm H}}}$$

Transition state theory (Minissale + 2022)

$$\nu_{\text{TST}} = \frac{k_B T_{\text{peak}}}{h} q_{tr,2D}^{\ddagger} q_{rot,3D}^{\ddagger}$$

Bigger molecules are not well-described point masses

All layered sub-monolayer TPD curves

At submonolayer regimes, we need to do a distribution of E_b

• Ice surfaces are not homogenous and due to topology constraints: different binding potentials

Summary of recommended binding energies

Table 3. Recommended TST-derived binding energies and preexponential factors.

	n	$E_{b, \mathrm{TST}}$ [K]	$ u_{\mathrm{TST}}{}^a$	$T_{peak}{}^{b}$ [K]
MeSH-MeSH	0	4610 ± 110	$5.2^{+2.8}_{-1.0} imes 10^{17}$	106^{+14}_{-6}
$\mathrm{MeSH}-\mathrm{H}_{2}\mathrm{O}$	1	4640 ± 170	$4.9^{+0.6}_{-0.9} \times 10^{17}$	104 ± 5
MeOH-MeOH	0	5750 ± 80	$3.4^{+1.5}_{-0.9} \times 10^{17}$	$131\substack{+14 \\ -11}$

⇒ Both MeSH binding energies are similar, MeOH-MeOH is higher, and MeOH-H₂O should be higher

Computational Calcs

TableD3. Computationally-derived binding energies $(E_{b, \text{ comp}})$ obtained using Equation at the MO6-2X/aug-cc-pVDZ level of theory.

Molecule A	Molecule B	$E_{b,\mathrm{comp}}$ [K]
CH_3SH	CH_3SH	1642
CH_3SH	H_2O	2588
CH_3OH	CH_3OH	3105
CH_3OH	H_2O	3033

 \Rightarrow We see the opposite trend here...

 CH_3SH-H_2O

CH₃OH–H₂O

