Ex*PAG

TECHNOSIGNATURESAG

Sofia Sheikh, on behalf of SAG 25 ExoPAG 31 January 11th, 2025

A brief introduction to technosignatures

- "Technosignatures" = Astronomically-observable traces of technologically-capable life in the universe
- Sub-category of biosignatures
- Some technosignature detection techniques are directly analogous to biosignature techniques (e.g., CFCs in exoplanet atmospheres), others are unique (e.g., narrowband radio emission)
- Critical component to understanding the "origin, evolution, distribution, and future of life in the universe"

Technosignatures SAG-25: Goals

- Investigate which technosignature projects should play a role in NASA's portfolio
- 2. Identify the most promising technosignature investigations to prioritize for development
- 3. Identify science and technology gaps relevant to technosignature searches
- 4. Identify existing NASA programs most relevant to technosignature searches and determine how they can be more responsive to technosignature searches
- 5. Identify best practices for NASA program officers and review panelists to evaluate technosignature proposals in XRP and other programs
- 6. Identify potential new initiatives to build community and intercommunications with other astrobiology efforts

SAG-25 Steering Committee

Sofia Sheikh

Eddie Schwieterman

Daniel Angerhausen

Benji Fields

Steve Croft

Mark Elowitz

Adam Frank

Megan Grace Li

 Steering Committee: 9 total leads, 2 of which are executive secretaries

 Membership: 74 total members across a range of career stages, sub-fields, and institutions

 Working Groups: Two larger groups on Exoplanetary and Non-Exoplanet
Technosignatures (encompassing the first 4 goals), two smaller groups on
Proposal Review (goal 5) and
Astrobiology Integration (goal 6)

Technosignatures SAG-25: Timeline

Technosignatures SAG-25: Leadership in the NASA DARES RFI

 Organizing technosignature-related responses to the NASA DARES RFI (affiliate activity)

Index	Lead Author(s)	Author Contact Information	White Paper Title	Status
0	Sofia Sheikh	ssheikh@berkeley.edu	Technosignatures in the DARES Report: Motivation, Omnibus of Responses, and Resource Hub	In draft stage ▼
1	Chenoa Tremblay / Joe Lazio	ctremblay@seti.org	Commensal Observations: An Emerging Opportunity for Astrobiology	In draft stage ▼
2	Jason Wright	astrowright@gmail.com	Exoplanet Technosignatures	In draft stage ▼
3	Megan Grace Li	megangrace@g.ucla.edu	Early-career groups in technosignatures strengthen community	In draft stage ▼
4	Sofia Sheikh (+ SAG WG3 and WG4)	ssheikh@berkeley.edu	Better Integrating Technosignatures in NASA's Approach to Biosignatures and Astrobiology	In draft stage ▼
5	Jeremy Tregloan-Reed	jtreed@setiap.org	TBD (Detecting industrially-caused climate change on exoplanets through transmission spectroscopy)	Just idea, has leader ▼
6	Dave DeBoer (?)	ddeboer@berkeley.edu	TBD (Lunar Farside Radio Telescope)	Just idea, has leader ▼
7	???	???	TBD (Coherent direct EM SETI on a space-based mission)	Just idea, no leader ▼
8	???	???	TBD (Encouraging more and easier cooperation with ground based facilities for projects)	Just idea, no leader ▼
9	???	???	TBD (Post-detection paper out of the UK group?)	Just idea, no leader ▼

Technosignatures SAG-25: Leadership in the NASA DARES RFI

- SAG Steering Committee is writing a technosignatures "omnibus submission" to the DARES RFI
- Will serve as a...
 - Motivation for the inclusion of technosignatures in DARES
 - Omnibus of other technosignature responses
 - Hub for recent technosignature literature/workshop reports

Technosignatures in the DARES Report: Motivation, Omnibus of Responses, and Resource Hub

Sofia Sheikh, Jason Wright, Adam Frank, Edward Schwieterman, Other SAG Steering Committee Members

December 2024

1 Technosignatures and Astrobiology

Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. Finding life beyond Earth would greatly advance our understanding all of these topics, and is a primary goal within modern astrobiology. However, given that our *in situ* exploration is (for now) confined to the solar system, much of the search for life beyond Earth is dependent on searching for life's byproducts: using the methodology of astronomy to look for remotely-detectable biosignatures in electromagnetic radiation. The overwhelming diversity of life across its kingdoms on Earth — life that is both single- and multi-cellular, some life that shows intelligent or tool-using behaviour — leads to an equally diverse array of biosignatures on the surface, oceans, and atmosphere of our planet. For example, single-celled organisms can produce gaseous or atmospheric biosignatures such as CH₄ as direct or indirect products of metabolism [Schwieterman et al.] [2018]. However, human technology also produces atmospheric constituents at levels that would be impossible from purely abiotic sources, e.g., NF₅ or SF₆. These technosignatures are not metabolic, but distinctly imply the presence of humans, a technologically-capable species, on the surface of our planet. From this example, where the same methdology (the atmospheric characterization of exoplanets) could deliver the same discovery (life beyond Earth), it is straightforward to see that scientifically, technosignatures are a sub-category of biosignatures.

However, in NASA's last major astrobiology strategy document in 2015, technosignatures were not considered as part of astrobiology, or at least, not those that were delineated as "traditional SETI (Search for Extraterrestrial Intelligence)" [Authors and Reviewers, 2015]. [Wright [2018] motivates the need for technosignatures' inclusion in a future NASA portfolio by outlining a few key ideas: workers of a "giggle factor" should not influence US science priorities; technosignature work is not an "all-or-nothing" proposition, and has led to significant scientific

Technosignatures SAG-25: Working Group 3 Case Study

 WG3 Task 1: Identifying ROSES proposal calls in the last 10 years that are relevant to technosignature science

Year	Division Letter	Division	Number		# (for on-2024 calls)	Most recent ROSES appearance =	Initials of Skimmer	Relevance Score	Notes
2024	A	Earth Science	A.18	Atmospheric Composition: Radiation Sciences Program	n	2022	SZS		Wrong link for 2022 - need to find correct one
2024	A	Earth Science	A.19	Atmospheric Composition: Atmospheric Composition N	fodeling and An	2024	szs	1	Modelling for Earth atmosphere data, could be releving pollution sourced aerosols where they impact cloud
2024	A	Earth Science	A.20	Atmospheric Composition: Tropospheric Composition F	Program	Not Solicited In Last 10 Years	SZS	0	
2024	A	Earth Science	A.21	TEMPO/ACX Science and Applications Team		2024	MGL	1	One of the objectives is to model how pollution and
2024	A	Earth Science	A.22	NASA Energy and Water Cycle Study		2024	MGL	0	Solicited in 2025 - Research that understands the ph
2024	A	Earth Science	A.23	Terrestrial Hydrology		2024	MGL	0	Research to understand hydrologic processes associnterface, and terrestrial water stores
2024	A	Earth Science	A.24	Weather and Atmospheric Dynamics		2024	MGL	1	Understanding for the physical processes that drive physical processes for how weather works on earth types.
2024	A	Earth Science	A.25	Earth Surface and Interior		2024	MGL	1	Work using infrared data to measure "thermal and chechnosignature theory - is there any work being dor
2024	A	Earth Science	A.26	Rapid Response and Novel Research in Earth Science	1	2024	MGL	2	Includes space for * Exceptionally novel and innovat do not fit within ESD's current slate of solicitations as pollution this would be a good way to use that new p
2024	A	Earth Science	A.27	NASA-ISRO Synthetic Aperture Radar Mission (NISAR	R) Research and	2023	MGL	1	This is a call to use Radar data for understanding ec
2024	A	Earth Science	A.28	Remote Sensing Theory for Earth Science		2024	MGL	2	General remote sensing call for any science that car
2024	А	Earth Science	A.29	EMIT Science and Applications Team		2023 - not being offered until 2026	MGL	N/A	the link on 2023 links to a different proposal and the
2024	A	Earth Science	A.30	Understanding Changes in High Mountain Asia		2023	MGL	0	I don't think encouraging a technosignature angle in

Technosignatures SAG-25: Summary of SAG activities so far

- Established mission statement / list of goals
- Formalized steering committee
- Held open call for membership, accepted members
- Decided on Working Group structure and membership
- Held kickoff meeting (Nov. 2024)
- Holding initial Working Group meetings, undertaking WG goals (Jan. 2025)
- Leading and organizing submissions to the DARES RFI