Exoplanet Detection and Characterization in the Ultraviolet using a Starshade Complement for Habitable Worlds Observatory

Zahra Ahmed, Stuart Shaklan, Simone D'Amico ExoExplorers Science Series June 14, 2024

Source: ESA/Hubble

Overview

- Background & Motivation
 - The Search for Habitable Worlds
 - Starlight Suppression
 - Data Reduction Pipelines
- Project Goals
- Data Simulation
- Background Subtraction
- Conclusions & Way Forward

Source: ESA/Hubble

The Search for Habitable Worlds

Achieving Habitable Worlds Observatory's goal of imaging and characterizing ~25 habitable worlds will require advancements in starlight suppression as well as data simulations and analysis pipelines

Starshades: A Powerful Characterization Tool

- Starshades are external telescope occulters that can work in tandem with ground- or spacebased telescopes
- Optical tests have shown starshades can achieve > 10^{-10} contrast
- Small inner working angle (IWA)
- > High throughput
- Large Bandwidth
- Ideal for operating in the UV \geq
- > Tradeoff is reconfiguration time and fuel, which limits the number of targets that can be imaged

Source	e: NAS	A /JPL-	Caltech		

Starshades' ability to achieve high contrast coupled with their small IWA and broad bandwidth make them a powerful characterization tool in the ultraviolet spectrum

Starshades: A Powerful Characterization Tool

- > Starshades are external telescope occulters that can work in tandem with ground- or spacebased telescopes
- Optical tests have shown starshades can achieve > 10^{-10} contrast
- Small inner working angle (IWA)
- > High throughput
- Large Bandwidth
- Ideal for operating in the UV \triangleright
- > Tradeoff is reconfiguration time and fuel, which limits the number of targets that can be imaged

ExoPAG SAG 24: Exploring the Complementary Science Value of Starshade Observations

Biosignatures in the Ultraviolet

LUVOIR Final Report, Credit: Jacob Lustig-Yaeger

The 0.25 μm ozone feature is a key biosignature both in modern and Proterozoic Earth-like atmospheres

The Importance of Simulated Data and Analysis Pipelines

- Data Challenges
 - Starshade Exoplanet Data Challenge
 - Exoplanet Imaging Data Challenge
 - Roman Space Telescope Exoplanet Data Challenge
- Open-Source Software Libraries

Simulation frameworks and data analysis pipelines are necessary to assess the performance and limitations of mission architectures and inform noise budget requirements

Project Overview

Objective: Investigate the ability to characterize Earth-like exoplanets using a starshade in the ultraviolet to constrain ozone abundance with low resolution spectroscopy

1. Data Simulation: Simulate end-to-end starshade spectral data cubes that include systematic noise sources for a variety of observing conditions

2. Analysis: Extract the exoplanet spectrum from the noisy data and perform a sensitivity analysis to quantify under what conditions can the 0.25 μm ozone feature be constrained

Project Overview

Project Overview

Starshade Imaging Simulation Toolkit for Exoplanet Reconnaissance (SISTER)

Hildebrandt, S. et al. 2021 JATIS

Source: Sister.Caltech.edu/JPL-Caltech

UV Starshade Design

 UV Starshade design introduced in Shaklan, S. et al. 2023

Parameter	Value
Starshade Diameter (tip-to-tip)	$35 \mathrm{~m}$
Telescope Diameter	6 m
Number of Petals	24
Inner Working Angle	65 mas
Nominal Separation from Telescope	55,000 km $$
Nominal Operating Bandpass	250 - 500 nm

Data Simulation Parameters

Parameter	Value(s)		
Imaging Bandpass	250 - $500~\mathrm{nm}$ with 25 nm bands		
System Distance	10 pc		
Target Star	Solar-type star		
Planet	Modern Earth-twin in a circular 1 AU orb		
Planet True Anomaly	0, 30, 60, 90, 120, 150, 180 degrees		
Disk Inclination	0, 30, 60 degrees		
Exozodi Density	1, 5, 10, 20, 50, 100 zodi		

Data Simulation Parameters: Phase Angle

Parameter	Value(s)		
Imaging Bandpass	250 - $500~\mathrm{nm}$ with $25~\mathrm{nm}$ bands		
System Distance	10 pc		
Target Star	Solar-type star		
Planet	Modern Earth-twin in a circular 1 AU orbit		
Planet True Anomaly	0, 30, 60, 90, 120, 150, 180 degrees		
Disk Inclination	0, 30, 60 degrees		
Exozodi Density	1, 5, 10, 20, 50, 100 zodi		

 $cos(\alpha) = cos(\nu) sin(i)$ α = planet phase angle ν = planet true anomaly i = inclination

Data Simulation Parameters: Exozodiacal Dust

Parameter	Value(s)	
Imaging Bandpass	250 - $500~\mathrm{nm}$ with $25~\mathrm{nm}$ bands	
System Distance	10 pc	
Target Star	Solar-type star	
Planet	Modern Earth-twin in a circular 1 AU orbit	
Planet True Anomaly	0, 30, 60, 90, 120, 150, 180 degrees	
Disk Inclination	0, 30, 60 degrees	
Exozodi Density	1, 5, 10, 20, 50, 100 zodi	

- Post-processing techniques for directly imaged exoplanets in the habitable zone will need to account for resonant exozodiacal debris disks
- Exozodi models (Stark, C. 2011 AJS) generated via n-body simulations
- Scattered light exozodiacal dust images provided by Miles Currie (UW), used in Currie, M. et al., 2023 AJ

Data Simulation Results

- > 24-hour integration time
- Modeling stellar diffraction, solar glint, exozodi, local zodi, photon and detector noise w/ single injected planet
- Both animations are the same simulation, just with different scales
- > All simulations shown in units counts/pixel

Data Simulation Results: Phase Angle

- > 5-day integration time
- Stellar leakage subtracted off, only including exozodi, photon and detector noise \succ
- 60° inclined system, 1 zodi \triangleright

Noiseless (Exozodi + Planet Only) shown with different scales

With Noise

Link to GIF

Data Simulation Results: Exozodiacal Dust

- ➤ 5-day integration time
- Stellar leakage subtracted off, only including exozodi, photon and detector noise
- $> 60^{\circ}$ inclined system
- > 300– 325nm band
- Planet injected at quadrature

Link to GIF

Data Analysis: Extracting Planet Spectra

Exozodi

Solar Glint

Photon & Detector Noise

Local Zodi

Planet

_			
	Simulation Pa		
	Planet Phase Angle		
	System Inclination		
Exozodi Density			

arameters

90° (quadrature)

0° (face-on)

1 zodi

Simulation Pa		
Planet Phase Angle		
System Inclination		
Exozodi Density		

arameters

90° (quadrature)

60°

10 zodi

Simulation Parameters		
Planet Phase Angle	115°	
System Inclination	6 0°	
Exozodi Density	5 zodi	

Simulation Parameters		
Planet Phase Angle	139°	
System Inclination	60°	
Exozodi Density	5 zodi	

Summary

- > Starshades are an alternative starlight suppression technology to coronagraphs with possible complementary capabilities for constraining exoplanet biosignatures in the UV
- > There is ongoing work to understand the complementary science value of starshade observations through ExoPAG SAG 24
 - > My work supports these efforts through increasing our simulation capabilities and eventually conducting a sensitivity analysis of our ability to constrain the 0.25 μm ozone feature

Source: Sam Low, Space Rendezvous Lab

Source: NASA GSFC

Stay Tuned!

Acknowledgements

Thank you to the ExoExplorers Steering and Organizing committees for creating this opportunity for early-career exoplanet researchers and for the mentorship and support!

Questions? Email: zjahmed@stanford.edu

Source: ESA/Hubble

Exoplanet Detection and Characterization in the Ultraviolet using a Starshade Complement for Habitable Worlds Observatory

Zahra Ahmed, Stuart Shaklan, Simone D'Amico ExoExplorers Science Series June 14, 2024

Source: ESA/Hubble