

Latitude-dependent Atmospheric Waves and Longperiod Modulations in Luhman 16 B from the Longest Lightcurve of an Extrasolar World

Fuda Nguyen, Daniel Apai, Domenico Nardiello, Luigi Bedin, Xianyu Tan, Theodora Karalidi

Biography

Fuda Nguyen (Nguyễn Phúc Đạt)

Interests: Exoplanet atmospheres, ultracool atmospheres, time-series observations. Prof. Daniel Apai group.

2022 – Ph.D., Department of Planetary Science, Lunar & Planetary Lab, U. of Arizona
2021-2022 – Data Science, FPT Software
2020-2021 – Post-bacc, SOFIA Science Center @ NASA Ames
2016-2021 – B.Sc. Space Science, Vietnam National University (Đại Học Quốc Gia Việt Nam, TP.HCM)

Outline of talk

- 1. Introduction: The spectrum of planetary atmospheres
- 2. Atmosphere time-series: TESS longest photometric monitoring of Luhman 16 AB
- 3. Polar Vortices: The Spectrophotometric Approach
- 4. Summaries.

1. Introduction: The spectrum of planetary atmospheres

JunoCam Perijove-12 125fold timelapse (NASA / JPL / SwRI / MSSS / SPICE)

I. Introduction: Cloudscape unrealized & parameter space

Very hard to characterize transitting exo-giants, unless analogs!

I. Introduction: Ultracool Atmospheres

Ultracool atmospheres: Weakly-irradiated brown-dwarfs, DI-planets, cold Solar-system giants.

MIRI MRS Channel 24B

MIRI MRS Channel 3AB

Wavelength (μ m)

VHS 1256 b NIRSPEC, Miles+23

Spec IEU G140H/E100LP

pec IEU G235H/E170LP

MIRI MRS Channel 1ABC

NIRSpec IFU G395H/F290LP ---- MIRI MRS Channel 4A

Exquisite IR spectrum

10

15

20

25

10-15

Flux (W/m²/µm) 10⁻¹⁰

 10^{-18}

Cloud formation & condensates

Brown-dwarf // DI planets overlap

HR 8799c: Barman+2011, 2015, Oppenheimer+2013, Ingraham+2014 2M1324: Gagné+2018

I. Introduction: Ultracool Atmospheres as Giant Analogs

Ultracool atmospheres as giant analogs

2. Atmosphere time-series: TESS longest photometric monitoring of Luhman 16 AB

ARIZONA

II. Atmosphere time-series: Rotation Modulation

Common causes of rotational modulation: spots, clouds, waves.

Cloud thickness variation \rightarrow Brightness variation modulated over rotations.

II. Photometry: Luhman 16 AB

Brown dwarfs binary

WISE image, GMOS image (inset)

	Luhman 16 A	Luhman 16 B
Mass	33.5 M _{jup}	28.6 M _{jup}
Temp.	1350 K	1210 К
Period	~5 hr (Apai+21)	~7.5 hr (Buenzli+15)
Radius	0.85 R _{Jup}	1.04 R _{jup}

Physical Properties

II. Photometry: TESS Lightcurve of Luhman 16 AB.

TESS Lightcurve of Luhman 16 AB (sector 36 & 37): 1200-hour, full of time-complexity

II. Photometry: Long-period variations

Periods: 75-hours to 125-hours. Nature=?

Arizona

3. Polar Vortices: The Spectrophotometric Approach

Cassini north polar vortex (JPL/SSI)

Fuda+24b, in prep.

2) Rotational modulation* amplitude larger in redder BDs

*(weakly correlated with inclination)

III. Polar Vortices in BDs: line of observations evidences

1) Brown dwarfs pole less cloudy (and redder) than the equator.

III. Polar Vortices in BDs: line of observations in GCMs

GCM indicates pole-to-equator difference in vorticity, and lightcurve changes.

II. The Polar Vortices Hypothesis

Our hypothesis of BD's circulation regime:

II. Polar vortices: A simple model

Fuda+24b, in prep.

4. Summaries

And a state of the second state of the second

Summary

Context:

Ultracool atmospheres: giant planets analogs. **Solar System giants:** polar regions vortex-dominated. **Brown dwarfs:** Pole-to-equator color difference, latitudinal time-complexity in light curve.

Findings:

1. Longest TESS lightcurve of Luhman 16 AB, 1200-hour atmospheric monitoring.

2. Luhman 16 B: rotationally modulation <10-hour period well-explained by planetary-scale waves.

3. Luhman 16 B: multiple wavenumbers, k=1 & k=2 waves: implied latidudinal difference in windspeed distribution.

4. Multi-day long-periods variability: up to 125-hour periods (origin yet known, potentially polar vortices?)

5. Spectrophotometry can unravel polar vortices: preliminaries models show promises!

