
Biosignatures on Sub-Neptune Waterworlds

- Feasibility and challenges with K2-18 b

Shang-Min Tsai¹, Hamish Innes², Nicholas F. Wogan³, Edward W. Schwieterman¹ ¹Earth and Planetary Sciences, UC Riverside ²Freie Universität Berlin, German ³Space Science Division, NASA Ames Research Center

- Recent JWST/NIRSpec transit observations of K2-18 b reported a tentative detection of a biosignature gas, dimethylsulfide (DMS)
- We explore biogenic sulfur produced by marine microbes in various biological fluxes and stellar UV environments
- While biogenic sulfur molecules are readily destroyed on modern Earth, they are more resilient on Hycean worlds around M-stars. We find about 20 times Earth's biological flux is required to reproduce the reported DMS
- Due to strong overlapping absorption with CH₄, it is challenging for NIRSpec to pick out DMS, but MIRI could potentially detect the joint features (DMS + C₂H₄ + C₂H₆) in the mid-IR with enhanced biosulfur flux

no S_{ora}

C2He enhanced biological production

10

Wavelength (µm)

12

20× Sorg w/o DMS

0.3050

0.3025

0.3000

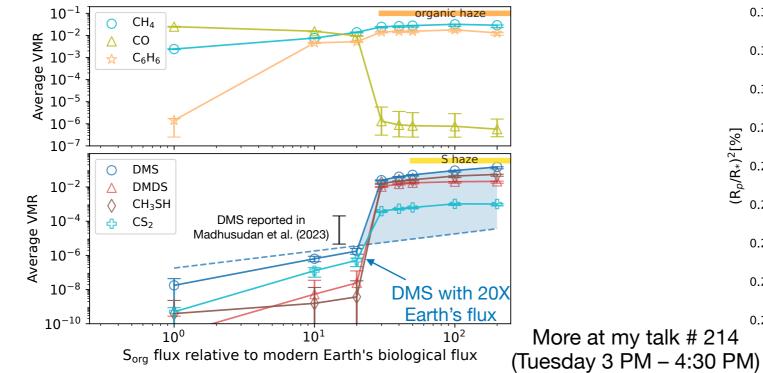
0.2975

0.2950

0.2925

0.2900

0.2875


0.2850

1× S_{ora}

20× Sora

no biological production

8

Average abundance as as a function of biological sulfur flux

Tsai et al. (2024) ApJL

 $-C0_{2}$ -

14