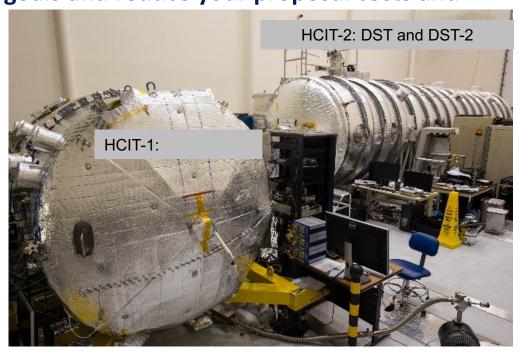


ExEP Resources Available to Strategic Astrophysics Technology (SAT)-2023 PIs

Brendan Crill
Deputy Program Chief Technologist
NASA Exoplanet Exploration Program (ExEP)
Jet Propulsion Laboratory/California Institute of Technology

11/14/23

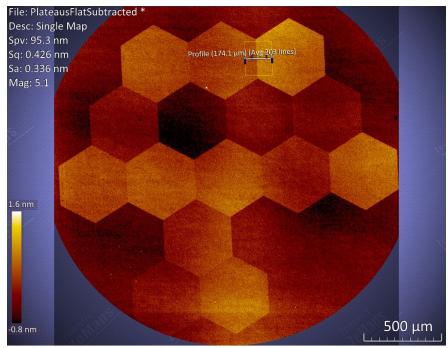
ExEP Resources for SAT PIs

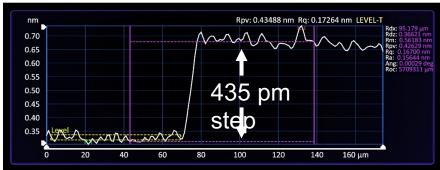

 This presentation provides an overview of the ExEP resources located at JPL available to support a Strategic Astrophysics Technology (SAT) proposal.

 The available resources, if appropriate for your needs, may help you more efficiently meet your milestone goals and reduce your proposal costs and

schedule.

Resources available on request:


- High Contrast Imaging Testbed (HCIT) laboratory:
 - Vacuum coronagraph testbeds:
 - Decadal Survey Testbed (DST)-1
 - DST-2
 - Vacuum Surface Gauge (for metrology)
 - HCIT-1
 - In-air coronagraph testbed
 - Reflectometry/polarimetry for mask characterization.



New for SAT-2023: Static Segment Phase Errors

- **ExEP** has developed a reflective optic to simulate static sub-nm phase errors introduced by a hexsegmented telescope mirror.
- While the optical path differences of the hexagons have been measured, the masks have not yet been commissioned in a coronagraph testbed. Their use is being made available to SAT PIs for coronagraph demonstrations in the **HCIT** but on a shared risk basis.
- Additional masks with a range of optical path differences can now be manufactured at JPL's Microdevices Laboaratory.

Optical path difference error measured across two segmented hexagons from Prototype 1 (2.5 mm); Prototype 2 (50 mm) has just been fabricated and is being optically mounted. Step size differences are produced through multiple overlapping rounds of photolithography (image credit: Dr Dan Shanks, JPL) 3 and e-beam deposition.

Gaining Access to the ExEP Resources at JPL

How to Request Use of ExEP Resources at JPL

- Submit preliminary Statement of Work (SOW) for use of ExEP resources to Brendan Crill no later than <u>January 8, 2024.</u>
 - Follow SOW questionnaire on next page.
- Schedule telecon with Brendan Crill before <u>Jan 9, 2024</u> to discuss use of the resources of interest and to obtain costing guidelines.
 - We will evaluate with the PI workforce, labor, and infrastructure access required across all received SOWs.
 - Proposal due date is January 31, 2024
- Brendan Crill will supply the proposal PI a Letter of Commitment for use of any ExEP resources.
 - PIs are to include both the SOW and the Letter of Commitment in their proposal (due January 31, 2024).
 - HCIT will provide workforce cost to set up testbeds; additional labor and unique procurements must be costed within the proposal.
- The Letter of Commitment does not assure selection of the proposal; lack of a SOW or Letter in a submitted proposal could adversely affect proposals intended to utilize ExEP resources.

SOW Questionnaire for Use of ExEP Testbed Resources

- Brief description of the proposed SAT
- 2. What resources are requested?
- 3. Milestone(s) to be accomplished and performance goals
- 4. Brief description of how the work will be conducted
- Period(s) and preferred dates, if any, over which the resource is requested, stating whether in vacuum or air for testbeds. Include any time required for preparatory work.
- 6. A list of the personnel, expertise, and level of effort (if any) who will assist in the use of the resource.
- 7. Any anticipated changes to the resource needed to accommodate your demonstrations.
- 8. List of items needed for all testbed modifications. Identify items you will be procuring within your proposal's budget and provide approximate cost of needed items.
 - a. Otherwise, state that no additional procurements will be necessary for the use of the infrastructure under consideration.
- 9. Provide any other relevant information or constraints.

Strategic Astrophysics Technology Timeline

- The timeline for requesting access to ExEP resources is based on the dates specified in <u>ROSES SAT-2023</u>
- Mandatory notice-of-intent (NOI) to propose to SAT-2023 is due on <u>December 15, 2023</u>
- The proposal deadline is <u>January 31, 2024</u>

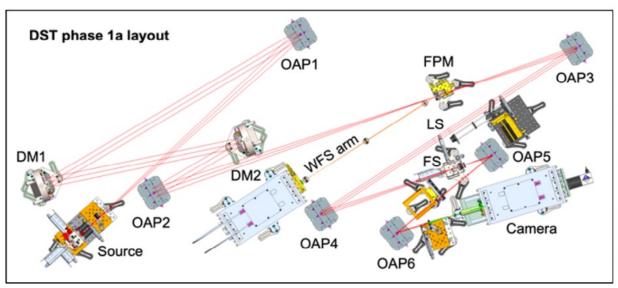
ExEP Technology Resources POC

For questions concerning use of ExEP technology resources or requests for more detail contact:

Dr. Brendan Crill
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Office: (818) 354-5416

Email: bcrill@jpl.nasa.gov



Additional Slides

Decadal Survey Testbed bench layout

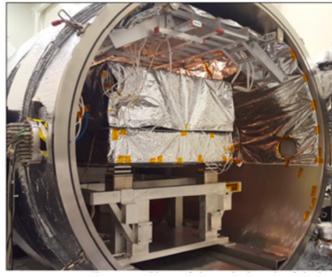


Figure 1: (Left) DST phase-1a commissioning layout. (Right) The DST bench in the HCIT2 vacuum chamber, covered in multi-layer insulation (MLI) and resting atop a support frame, Minus-K isolators, and Vespel platforms.

Decadal Survey Testbed 2 bench layout

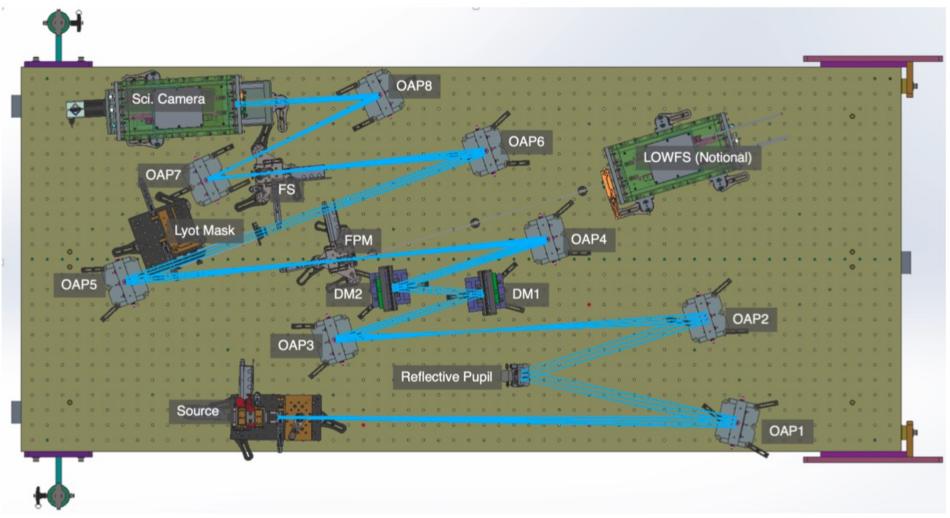


Figure 6: Top-down view of the DST2 bench CAD model with Zemax raytrace overlaid. Key elements are labeled.

Meeker et al. 2021 SPIE proceedings