

Solar system studies of atmospheric escape lessons from the MAVEN mission

Mike Chaffin

October 1 2023

ExoPAG San Antonio

Follow the water

Image courtesy of Darby Dyar, Nature

- Habitability is a major question for our terrestrial neighbors and exoplanets
- This heavily relies on the presence of liquid water and atmospheric pressure
 - Post- hydrodynamic
 - Post-bombardment

How do we know there was water?

Terrestrial planets: atmospheres

Mars Thin atmosphere (Almost all CO₂ in ground) Average temperature : - 50°C

Planets and atmospheres

Earth 0,03% of CO₂ in the atmosphere Average temperature : + 15°C

> Venus Thick atmosphere containing 96% of CO₂ Average temperature : + 420°C

 Both Earth and Venus have a thick atmosphere capable of sustaining liquid water

Terrestrial planets: atmospheres

- Both Earth and Venus have a thick atmosphere capable of sustaining liquid water
- However, unlike Earth, Venus and Mars lack a dipole magnetic field
- A magnetic field significantly influences the physics that drive atmospheric escape

Magnetospheres 101

- The solar wind is a stream of charged particles (protons, electrons, alphas) originating from the solar corona
- As the sun rotates, the stream of particles form a spiral and carry the sun's magnetic field out with it
- This magnetic field is the interplanetary magnetic field, or IMF

Basic atmospheric escape processes

Neutral escape

- Jeans <-> Hydrodynamic
- Photochemical
- Sputtering

lon escape

- Polar wind
- Ion outflow / fountain
- Auroral wind
- Pickup / bulk ion

Gronoff et al 2019

Escape velocity

	Venus	Earth	Mars				
Escape velocity							
	10.4 km/s	11.2 km/s	4.9 km/s				
Escape energy							
Н	0.6 eV	0.7 eV	.14 eV				
0	8.9 eV	10.3 eV	2.1 eV				
0 ₂	17.8 eV	20.6 eV	4.2 eV				

We often focus on escape processes and energy inputs...

Supply from below is equally important!

Two paradigms for atmospheric escape

Energy Limited Escape

- Abundant supply to escape region
- Escape energy difficult to obtain
- Escape process itself limits loss
- Typical for major species (N, O, C)
- "Photoevaporation" parameterized by stellar flux, escape efficiency

Supply / Diffusion Limited Escape

- Supply to escape region difficult
- Abundant escape energy
- Loss is limited well below escape region
- Typical for light minor species (H)
- Situation for H escape at Venus, Earth, Mars

What is an energy limit anyway?

What is an energy limit anyway?

Jeans Escape: Thermal H Loss to Space

- At the highest altitudes, H atoms in the tail of the thermal velocity distribution can escape
- Described by Jeans parameter λ :

 $\lambda = \frac{\text{gravitational potential energy}}{\text{gas kinetic energy}}$ $= \left(\frac{v_{\text{escape}}}{v_{\text{thermal}}}\right)^2 = \frac{GMm_{\text{H}}}{kTr_{\text{exo}}}$

higher $\lambda =>$ less escape

 If λ < 2-3, fluid effects matter and escape is hydrodynamic

Jeans Escape at Venus, Earth, Mars

If Jeans escape were the only mechanism, Venus would still have all its original water

Ion escape: unmagnetized planets

 The neutral upper atmosphere at Mars and Venus gets ionized and those ions sense electric and magnetic fields, which accelerate the ions past the escape velocity

- Ions can escape in several ways
 - These ion escape processes all depend on the solar wind

Ion escape: unmagnetized planets

 The neutral upper atmosphere at Mars and Venus gets ionized and those ions sense electric and magnetic fields, which accelerate the ions past the escape velocity

- Ions can escape in several ways
 - These ion escape processes all depend on the solar wind

- Ions can escape in several ways
 - These ion escape processes all depend on the solar wind

- lons can escape in several ways
 - These ion escape processes all depend on the solar wind

Ion escape: magnetized planets

- Classic light ion 'polar wind'
 - H+ and He+ escaping along open lines
 - Ambipolar diffusion is main driver
 - Ambipolar on draped fields at Venus
- Cusp 'ion fountain'
 - Solar wind enters along open field and enables heating and heavy ion escape
- 'Auroral wind' with heavy ions
 - Auroral oval on closed field lines
 - Electron precipitation causes heating and lifts heavy oxygen
 - Highly variable but most intense

Courtesy of GSFC

Hydrogen Escape from Earth

Earth H loss can occur via *plasmasphere charge exchange* [as in Yung+1989 photochemical model]

- ~85% Jeans loss at solar max,
- ~85% plasmasphere loss at solar min [Joshi+2019]

Heavy species loss rate uncertain due to lack of magnetotail measurements

• We need an Earth escape mission! (many heliophysics white papers)

Mars has multiple kinds of auroral

most occur only because it *lacks* an intrinsic global dipole field

Diffuse Aurora

MAVEN IUVS Sept 14, 2017 12:36 UTC

During strong space weather events, global aurora can engulf the planet, as in this image from September 2017

Solar wind protons colliding with the neutral atmosphere emit H spectrum photons around the limb

Faint emissions form arcs around remanent magnetic fields locked in regions of Mars' crust, first seen by MEX/SPICAM

The early Sun

[Billion years]

The early Sun was rotating much faster than it is today, and is believed to have been much more active:

XUV: 50 – 100x winds: 100 – 200x

As it loses angular momentum, it spins down

Credit: IAU/E. Guinan

Solar cycle

• MAVEN is now at a mission high for sunspot number / solar activity

ISES Solar Cycle Sunspot Number Progression

Past plasma observations at Mars and Venus

MEX and VEX: ion escape

mse, Rm

MEX- Mars

Similar instruments observed planetary ion escape

Present Venus ion escape (10²⁵/s) is 10x higher than at Mars (10²⁴/s)

At Venus, significant unknowns remain about acceleration processes and solar-cycle variation

MEX and VEX: ion escape

Similar instruments observed planetary ion escape

Present Venus ion escape (10²⁵/s) is 10x higher than at Mars (10²⁴/s)

At Venus, significant unknowns remain about acceleration processes and solar-cycle variation

Ramstad & Barabash (2021)

MAVEN: photochemical and sputtered escape

Courtesy of MAVEN

- MAVEN found present-day photochemical escape to be the **dominant** escape process for heavy species at Mars; at Venus, only H and D escape this way
- Isotope measurements show that 65% of Argon has been removed from the atmosphere through sputtering

Space Weather

Solar storms such as coronal mass ejections can boost escape by orders of magnitude

Lee et al 2018, Curry et al. 2020

Dust and atmospheric erosion

- Dust season occurs at Mars southern summer (near perihelion)
- Dust storms can be local or global and have a huge effect on ground assets (RIP solar powered rovers)

Dust and atmospheric erosion

- MAVEN works with
 MRO and TGO to
 observe dust
 - In 2018, MAVEN saw a ~5-10x boost in H loss during a regional dust storm vs. quiescent periods

New Concept

Chaffin+2014 Clarke+2014 Chaffin+2017

> H escape is enhanced and seasonally variable

H is produced more directly H₂O + sunlight ---> H

70 km
 Dusty, warm
 summer atmosphere
 carries water higher

H₂O

How much atmosphere has been lost at Mars?

An *extrapolation* back in time with current escape rates, scaled to extreme rates during a more active sun, suggests that the total escape rate would be responsible for the loss of a significant amount of water and / or atmosphere.

Assumptions:

- Increase in EUV and solar wind
- Increase in solar events (CMEs, CIRs)
- Early atmospheres are based on GCM models with increased EUV
- Post-bombardment
- Post-hydrodynamic

How much atmosphere has been lost at Mars?

An *extrapolation* back in time with current escape rates, scaled to extreme rates during a more active sun, suggests that the total escape rate would be responsible for the loss of a significant amount of water and / or atmosphere.

Assumptions:

- Increase in EUV and solar wind
- Increase in solar events (CMEs, CIRs)
- Early atmospheres are based on GCM models with increased EUV
- Post-bombardment
- Post-hydrodynamic

So how much atmosphere has been lost at Mars?

Using MAVEN measurements and extrapolating back in time, Mars has lost (at minimum)

800 mbar of atmosphere

OR

23 meters of water

(true value depends on many unknowns)

Jakosky et al. [2018] Chassefiere et al [2007]

Courtesy of S.Curry, adapted from Chassefiere et al 2007

VEX and PVO ion escape rates: implications

- Solar activity levels significantly differed for PVO and VEX, as did ion escape rates.
- What are the limits and the implications for water loss and crustal oxidation?

What processes operate at different planets

	Mars	Venus	Earth	Notes
Neutral escape				
Hydrodynamic	Х	Х	Х	Cataclysmic
Jeans	\checkmark	Х	Х	
Sputtering	\checkmark	\checkmark	Х	No magnetic field
Photochemical	\checkmark	H and D only	H and D only	Low gravity
Ion escape				
Pick up ion	\checkmark	\checkmark	\checkmark	
Polar wind	Х	Χ√*	\checkmark	
Auroral wind	Х	Х	\checkmark	Magnetic field
Ion outflow	Х	Х	\checkmark	Magnetic field

*same electric fields can accelerate particles along draped field lines

What processes operate at different planets

	Mars	Venus	Earth	Notes
Neutral escape				
Hydrodynamic	Х	Х	X	Cataclysmic
Jeans	\checkmark	Х	X	
Sputtering	\checkmark	\checkmark	X	No magnetic field
Photochemical	\checkmark	H and D only	H and D only	Low gravity
lon escape				
Pick up ion	\checkmark	\checkmark	\checkmark	
Polar wind	Х	X√*	\checkmark	
Auroral wind	Х	X	\checkmark	Magnetic field
lon outflow	Х	Х	\checkmark	Magnetic field
		VOLCANISM	VOLCANISM	

**same electric fields can accelerate particles along draped field lines*

Follow the water

Major factors:

- Volcanism and outgassing
- Gravity
- Magnetic field
- Atmospheric composition

Image courtesy of Darby Dyar, Nature

Conclusions

- PVO, VEX, MEX, and MAVEN have made initial measurements of atmospheric escape rates at Venus and Mars during different solar cycles
- The physics of atmospheric loss depends on planet size, magnetic field and atmospheric composition
- Understanding escape requires system-level thinking: lower/middle atmosphere and outgassing cannot be ignored!
- We need more measurements of:
 - atmospheres, isotopes, magnetic fields
 - kinetic scale structures and processes
 - proxies for the early sun/sun-like stars (via lunar measurements?)

Next steps

- Mars: understand coupled climate/escape system in the early atmosphere
- Venus: isotopic measurements (Go DAVINCI & EnVISION!), atmosphere system studies
- **Earth**: any mission at all dedicated to measuring atmospheric escape
- Exoplanets: can ongoing hydrodynamic escape on close-in exoplanets aid early solar system understanding?

