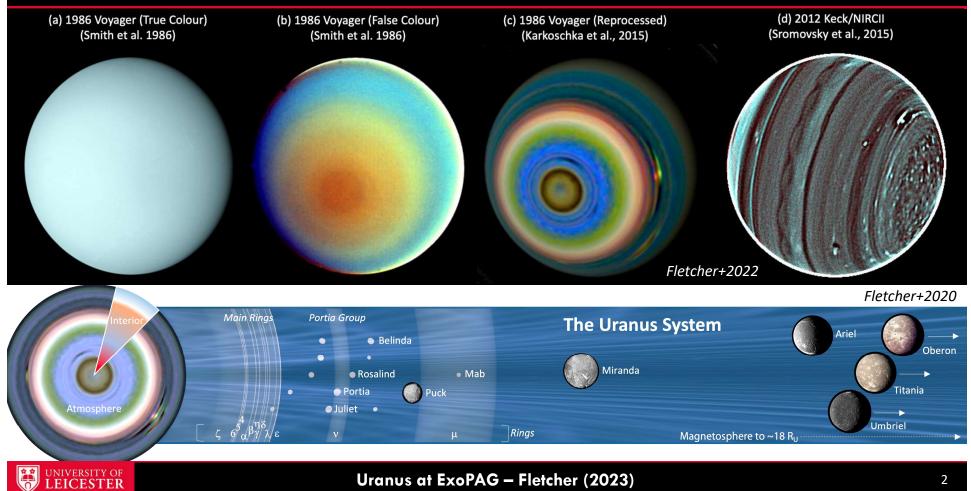
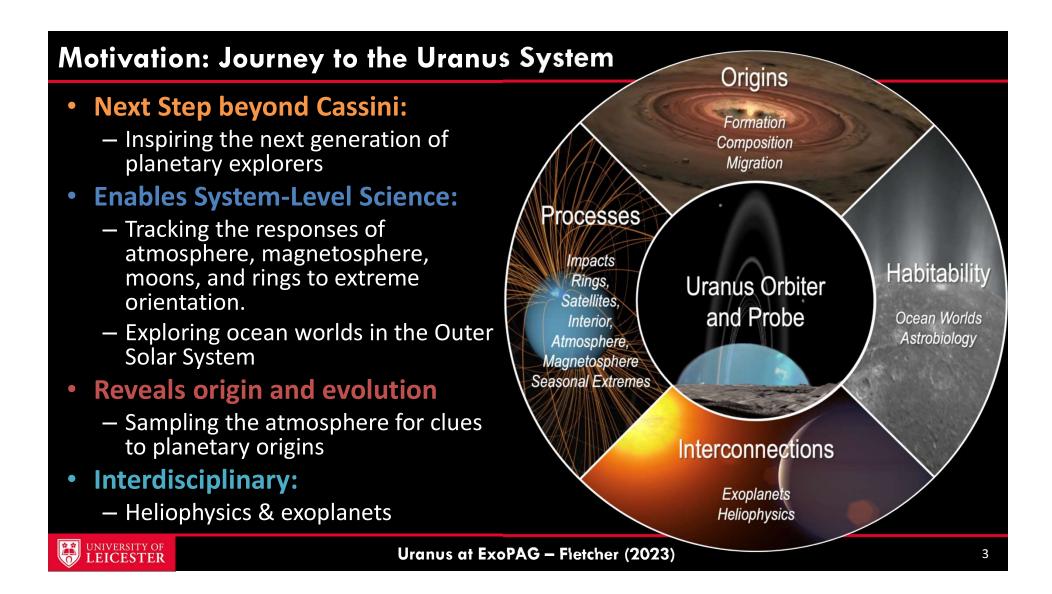

Uranus: Exemplar of the Ice Giant Class?


Flagship-class mission to explore all aspects of the Uranian system: the atmosphere, interior, magnetosphere, satellites, and rings

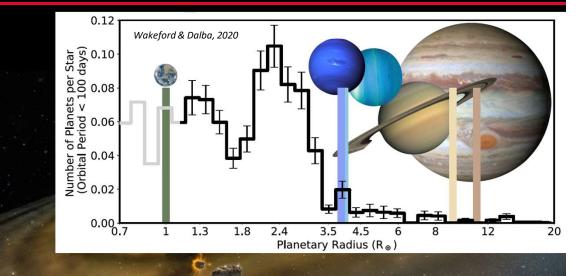


The Basics: Dispelling Myths

Cross-Disciplinarity

UNIVERSITY OF LEICESTER

- Strong international interest
 - Many reports, ESA/NASA studies, workshops since 2013
- Strong NASA cross-divisional interest
 - Recommended in both the Planetary and Solar and Space Physics 2013 Decadal Reports



Ten Questions: Uranus as an Exoplanetary System

	1	What makes an Ice Giant?			
Uranus,	2	What does the Inside of an Ice Giant look like?			
	3	Why did Uranus & Neptune diverge?			
	4	How does the Sun Influence Ice Giant Atmospheres?			
	5	How does Weather Work in H ₂ -Dominated Atmospheres?			
	6	Is Ice Giant Composition shaped by External Influx?			
	7	How does Uranus interact with the Solar Wind?			
	8	Can we explore complex magnetospheres remotely?			
	9	Do Ice Giant Systems Harbor Ocean Worlds?			
Feb 1 st	10	Can Rings Reveal Gravitational Processes?			
1986					
UNIVERSITY OF LEICESTER	Uranus at ExoPAG – Fletcher (2023)				

Q1: What makes an Ice Giant?

- Does size matter?
 - Intermediate-radii planets, between gas giants & terrestrial.
 - Does something arrest the growth of proto-Uranus & proto-Neptune?
- Or is composition key?
 - Water-rock mix; H₂-He atmosphere with 10-100x enrichment.
 - Gas phase or solid-phase accretion?
 - Reveals source reservoirs for worlds at Solar System's edge.

Are these common products of planetary formation? What controls the cross-overs from Uranus, to sub-Neptune, to super-Earths? How does accretion work in the outer Solar System?

UNIVERSITY OF LEICESTER

Q2: What does the Inside of an Ice Giant look like?

- H₂-rich Jupiter as a source of bias!
- Exotic phases of matter, from atmosphere, to superionic oceans, to hot icy mantles...
 - Phases not seen elsewhere in Solar System.
 - Density distribution remains unknown.
 - Are their diffuse cores, or fully differentiated?
- Consequences for interioratmospheremagnetosphere connections?

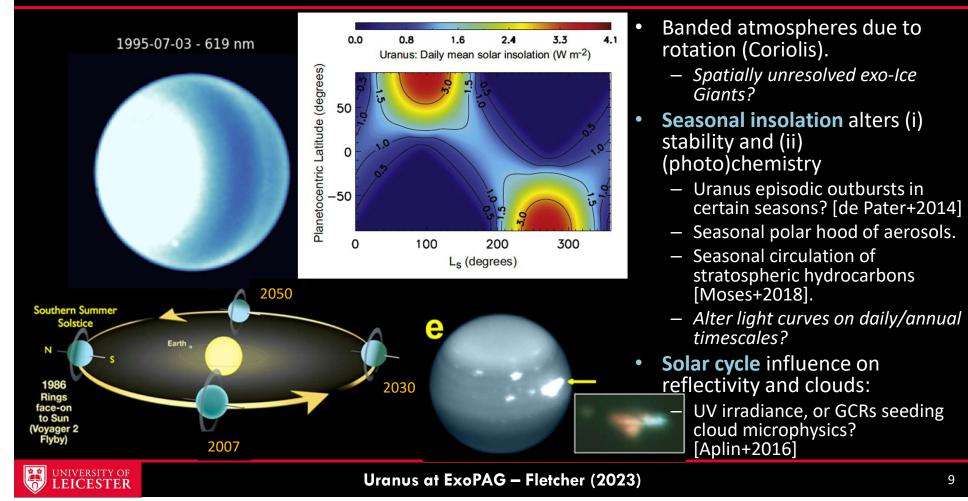
UNIVERSITY OF LEICESTER

Uranus at ExoPAG – Fletcher (2023)

.Rock/ice balance?

Core?

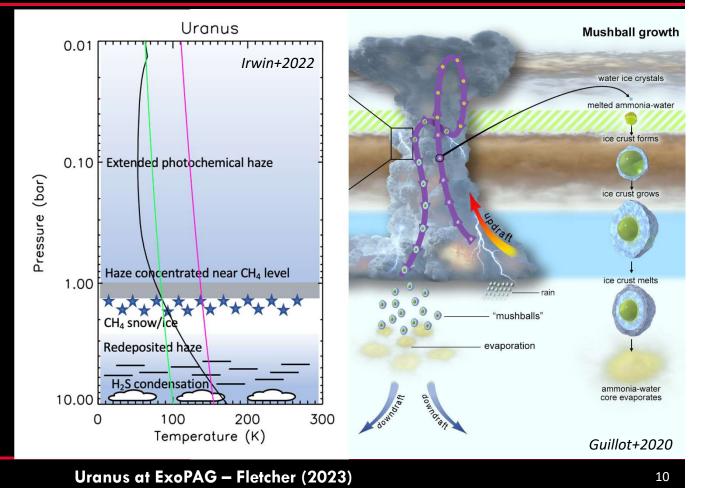
Phases of ice?


Q3: Why did Uranus & Neptune diverge?

- Extreme differences (tilt, seasons, internal energy) despite shared origins.
- Uranus with negligible internal heat; Neptune with 2.5x
 - Layering and trapping, or primordial heat loss?
 - Consequence of early collision?
- Driver of episodic atmospheric phenomena & outbursts.
- Which is the more likely endproduct of Ice Giant evolution?
- What are the *implications for the cooling* of exo-lce Giants?

Kegerreis et. al., 2018

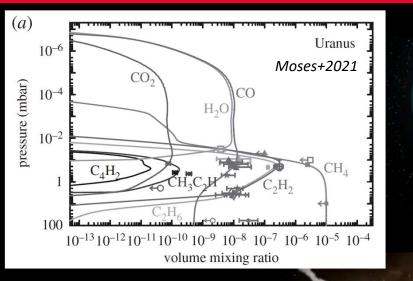
Q4: How does the Sun Influence Ice Giant Atmospheres?

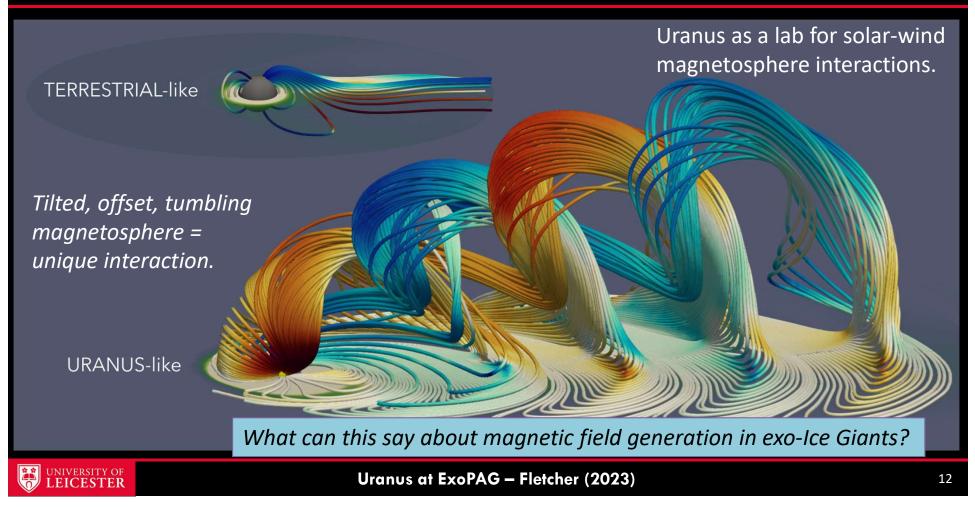

Q5: How does Weather Work in H₂-Dominated Atmospheres?

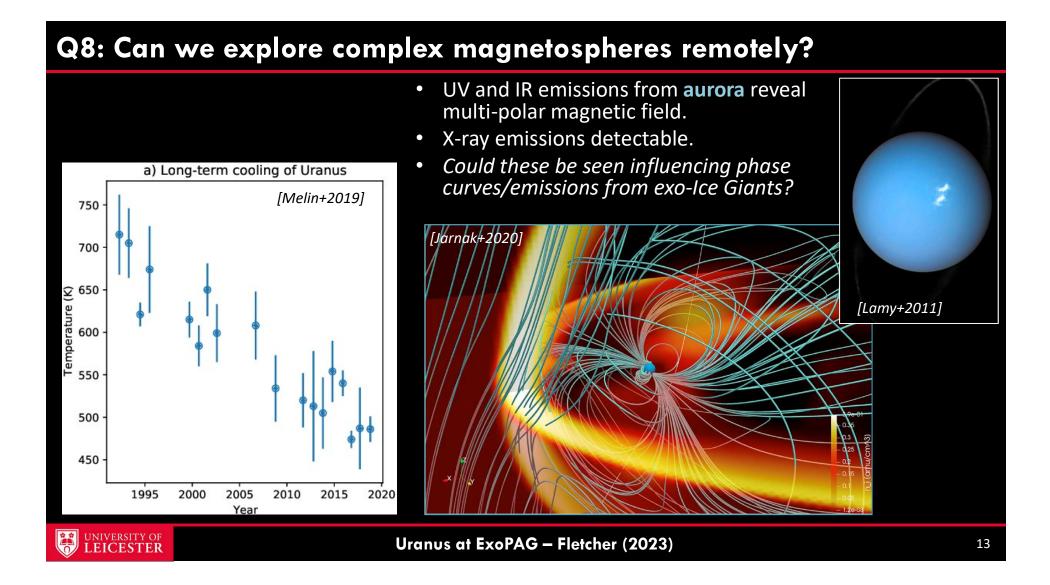
- Bottomless atmospheres

 precipitation & "virga."
- Moist air heavier than "dry" H₂-He.
- Chemical and phase transformations govern the aerosols we see at cloud-tops.
- Sensitive to:

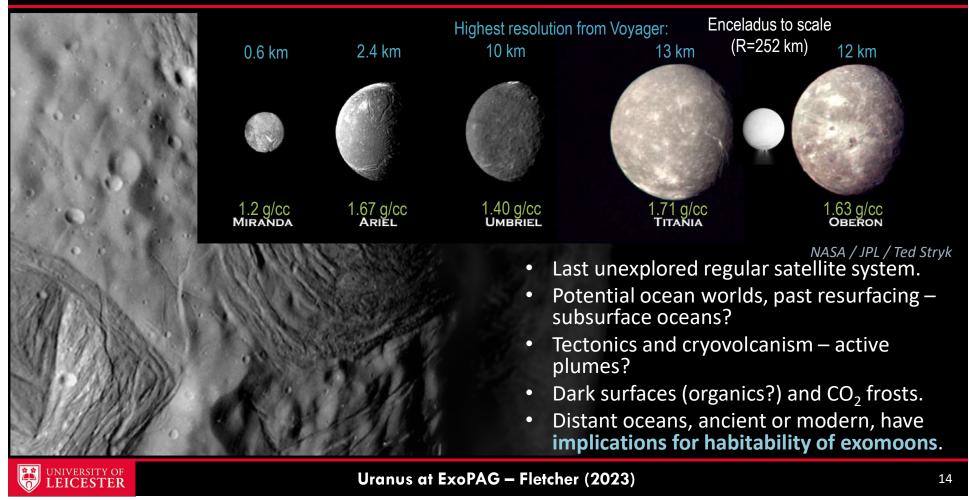
UNIVERSITY OF LEICESTER


- chemical abundance (e.g., CH₄),
- temperature profile,
- availability of cloud nuclei,
- Seasonal insolation
- Local dynamics (storms)
- Global circulation (bands).


Q6: Is Ice Giant Composition shaped by External Influx?


- Upper atmospheric chemicals from external sources:
 - Comets, interplanetary dust, ring rain, satellite material.
 Often O rich (H O CO CO)
 - Often O-rich (H_2O, CO, CO_2)
- Some chemicals last decades (HCN on Jupiter from SL9 comet).
- Could this influx dominate composition, rather than being primordial?
- Does atmosphere represent bulk composition?

UNIVERSITY OF LEICESTER



Q7: How does Uranus interact with the Solar Wind?

Q9: Do (Exo)lce Giant Systems Harbor Ocean Worlds?

Q10: Can Rings Reveal Gravitational Processes?

Ten Questions: Uranus as an Exoplanetary System

Window on origins and environments of "Intermediatesized worlds"

Uranus,

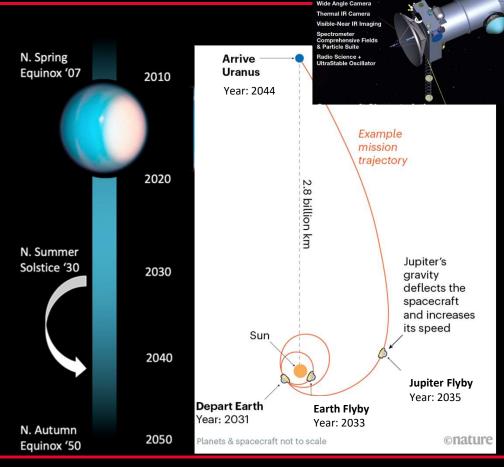
Feb 1st

UNIVERSITY OF LEICESTER

1986

What makes an Ice Giant? 1 What does the Inside of an Ice Giant look like? 2 Why did Uranus & Neptune diverge? 3 How does the Sun Influence Ice Giant Atmospheres? 4 How does Weather Work in H₂-Dominated 5 **Atmospheres?** Is Ice Giant Composition shaped by External Influx? 6 How does Uranus interact with the Solar Wind? 7 8 Can we explore complex magnetospheres remotely? **Do Ice Giant Systems Harbor Ocean Worlds?** 9 **Can Rings Reveal Gravitational Processes?** 10

Uranus at ExoPAG – Fletcher (2023)


16

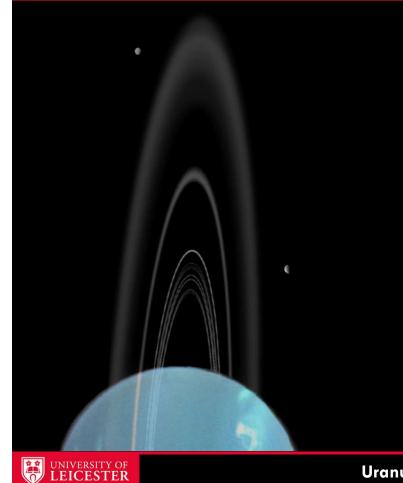
Uranus Orbiter and Probe (UOP)

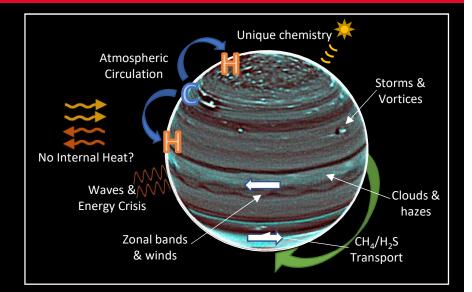
- Uranus Orbiter and Probe as top flagship priority
 - End to end viable concept with no new technologies.
- Flexible launches from 2031 on Falcon 9 Heavy
 - Optimal launch in 2031-2032 with Jupiter gravity assist to shorten cruise to 12 to 13 yrs
 - Flexible launch opportunities through 2038 with increased ~15 yr cruise
- Comprehensive Multi-Year System Tour:
 - Baseline of 4 years; polar & low-inclination; as close as 1.1 RU (gravity & mag);
 - Flybys of all major moons.
- In Situ Probe:

UNIVERSITY OF LEICESTER

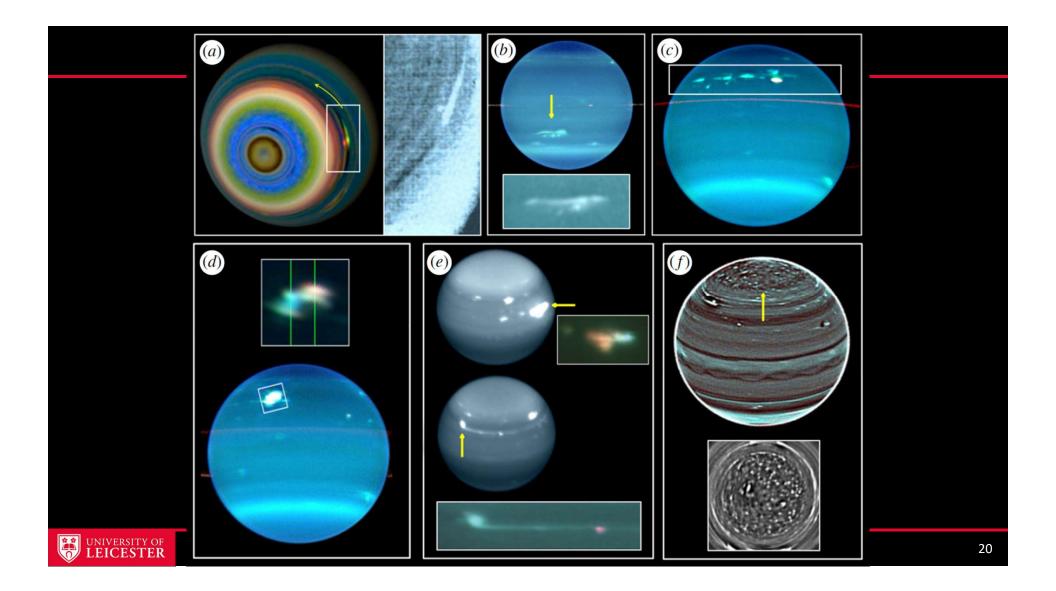
- Direct measurements of composition.
- Depth to 5 bars (10 bars preferred)

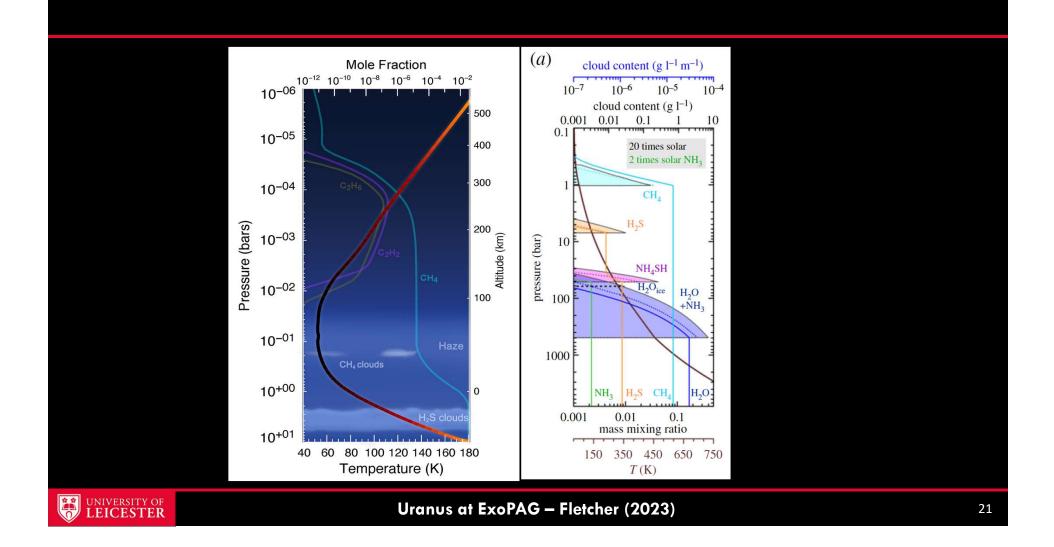
Instrument Suite


Magnetometer Narrow Angle Camera


Orbiter Instrument Suite

Supplemental Slides




Theme II: Unique Atmosphere

- Negligible internal heat layered convection?
- Active storms, waves.
- Coldest troposphere/stratosphere.
- Seasonal chemistry & weak mixing.

Conceptual Payload: Orbiter and Probe

Instrument Suite

Orbiter Instrument Suite

Magnetometer*

Narrow Angle Camera

Wide Angle Camera

Thermal IR Camera

Visible-Near IR Imaging

Spectrometer Comprehensive Fields & Particle Suite

Radio Science + UltraStable Oscillator

+Microwave, UV, Mid-IR Spectrometer; ENA; Doppler Imager

Spacecraft Characteristics

- Total flight system mass (including probe): 2756 kg (dry), 7235 kg (wet)
- 30% dry mass and power margins
- 3-axis stabilized, except for passive spin during cruise hibernation
- Uses 3 Next-Gen Mod 1 Radioisotope Thermal Generators
- Planned mission data volume return: 51.9 GB

Probe Instrument Suite

Atmospheric Structure Instrument

Mass Spectrometer UltraStable Oscillator Ortho-Para Hydrogen Sensor

> +Nephelometer; Net Flux Radiometer; Helium Detector

Uranus Orbiter & Probe shown in launch configuration on a Falcon Heavy Expendable (baselined).

Baseline and Threshold Mission Requirements

Category	Baseline Requirement	Threshold Requirement	Goal		
Orbital Tour	4 Years	2 Years	Adequate sampling of magnetosphere, satellite flybys, rings, atmospheric observations, satellite gravity		
	Polar phase, followed by low inclination phase	Polar only	Obtain Uranus gravitational moments		
Satellite Flybys	3 targeted, 2 non-targeted, flybys of each of the major moons @ <10 km/s	2 targeted,1 non-targeted, flybys of each of the major moons @ <10 km/s	80% surface coverage (incl. w/ Uranus-shine)		
	Targeted and non-targeted flybys of small moons	Non-targeted flybys only	Inventory and characterize small moons		
	Polar and low inclination passes	Polar only	Gravitational moments and coverage		
Uranus Orbits	Close (1.1 R _u) polar & low inclination dayside passes	Polar only	Gravitational moments and coverage		
Probe Depth Range	From 0.1 to 5 bars (10 bars preferred, but not a driver)	From 0.1 to > 1 bar	Reach depths past certain condensation levels		
Payload	Full Complement	Remove WAC from orbiter and ortho-para sensor from probe			

UNIVERSITY OF LEICESTER

Orbiter Configuration [APL Study, 2022]

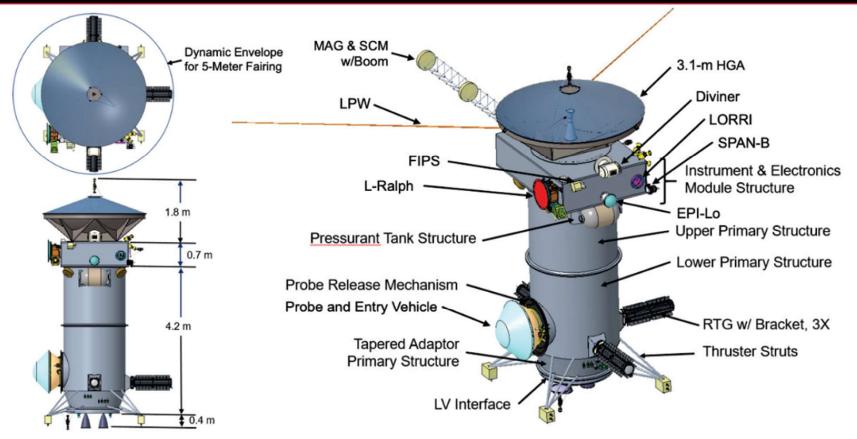


Exhibit 3-17. Orbiter Layout with Dimensions and Instrument Configuration.

UOP Cost

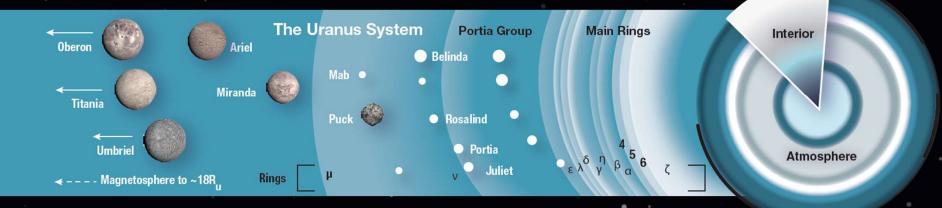
		Uranus Orbiter & Probe Cost Estimate							
		Cost in FY25\$K							
WBS			Ph A-D	Ph E-F		Total		Notes	
	Phase A	\$	7,628	\$	-	\$	7,628	Assumption based on previous studies	
1	PM			\$ -					
2	SE	\$	162,077		-	\$	162 077 1	A-D: Wrap factor based recent NFs and APL missions E-F: Bookkept with WBS 7	
3	МА								
4	Science	\$	27,192	\$	223,668	\$	250,860	Average \$13.3M per year during Phase E	
5	Payload	\$	180,247	\$	-	\$	180,247	Hardware estimated via parametric models (NICM, SEER Space)	
6	SC	\$	724,234	\$	-	\$	724,234	Estimated via parametric models	
7	MOps	\$	41,121	\$	299,053	\$	340,174	Ph E: DSN \$21.3M, Average Ph E MOps based on APL historical costs	
8	LV	\$	236,000	\$	-	\$	236,000	Falcon Heavy Expendable (\$210M) + \$26M NEPA	
9	Ground	\$	18,573	\$	19,313	\$	37,886	BOE	
10	I&T	\$	114,869	\$	-	\$	114,869	Based on APL historical I&T %, includes testbeds	
	Reserves	\$	634,157	\$	135,508	\$	769,665	Per Decadal guidelines: 50% A-D, 25% E-F. LV excluded	
	Total	\$	2,146,097	\$	677,542	\$	2,823,640		
	Total w/o LV	\$	1,910,097	\$	677,542	\$	2,587,640		

- Cost estimates are reported in Fiscal Year 2025 (FY25) dollars
- The NASA New Start inflation index was used to adjust to FY25 dollars
- Major cost drivers: spacecraft complexity, long mission duration, RTGs (3)

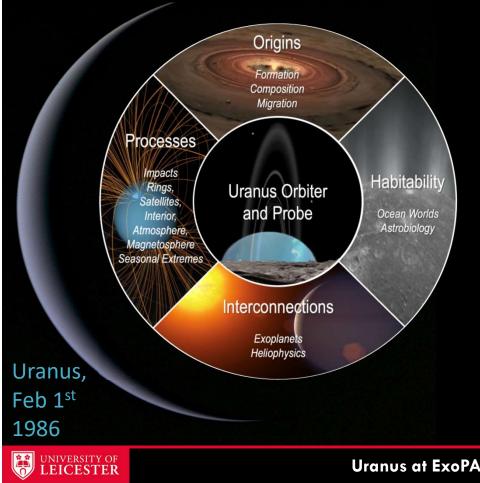
\$3M in Presidential budget for FY25 Compare to MSR wanting wanting an extra \$500M in FY24 and 25

UNIVERSITY OF LEICESTER

Plutonium

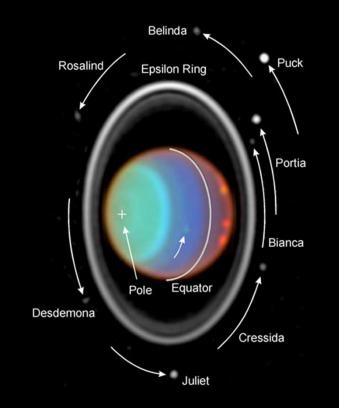

- NASA is working with the Department of Energy to ensure it has sufficient plutonium-238 for missions projected to launch through the end of the decade.
 - Single Multi-Mission RTG (MMRTG) and up to 24 RHUs for the Dragonfly mission to Saturn's moon Titan in 2027.
 - 40 RHUs for Rosalind Franklin Mars rover, slated for launch in 2028.
 - Two MMRTGs and 20 RHUs for potential use on a New Frontiers mission in the early 2030s.
- UOP needs 3 units of a new Next-Gen RTG design under development by NASA, which each use twice the plutonium of an MMRTG. 1st Mod-1 PDR in 2024.
 - Constant-rate Pu production not enough, midto-late 2030s more reasonable.

System-Level Explorer


Orbital Operations: probe insertion followed by 4-year tour, including polar and equatorial campaigns observing Uranus and rings, with multiple targeted flybys of the outer four satellites

- First dedicated explorer of an Ice Giant system.
- Provides a balanced programme within decadal survey, alongside target-specific (Mars, Europa, Titan) missions.
- International participation supported by ESA Voyage 2050.
- Robust science & architecture, hope to begin in 2023-24.

Summary: Onwards to Uranus

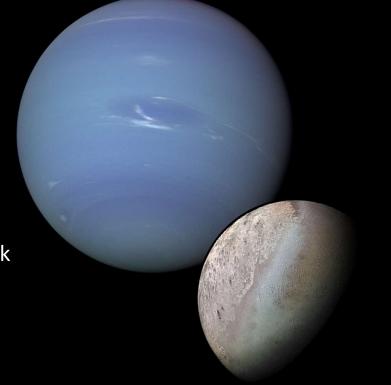


- Uranus mission top priority flagship.
 - Optimal launches: 2031-32.
 - No time to lose!
- System-level science.
- Recommendations under consideration by NASA; programme requires budget lift.
- International participation supported by ESA Voyage 2050 (CMIN22 v. important!).
- Can we make this a reality?

Concept of Operations

Orbital period during tour ~34 days

- Start in polar orbit, use Titania to pump down to equatorial
- General data strategy
 - Tour Ka-band science downlink, one 8-hr pass /day
 - Possible additional passes for critical events and nav purposes
 - Compression assumption average, assuming 2:1
- Onboard Storage of all science data and housekeeping
 - Some instruments also have their own storage
- Solar conjunction not a problem during any of the critical events
- Considered 4 orbit types, all have sufficient downlink to achieve science goals
 - Uranus/Rings Remote sensing focused
 - F&P and Mag focused
 - Satellite flyby w/ remote sensing focused
 - Multiple satellite flyby focused (equatorial phase)


UNIVERSITY OF LEICESTER

Why Not Neptune?

- Equally compelling, both critical to understanding Ice Giant systems.
 - Triton: captured KBO with active processes & atmosphere.

• Uranus:

- End-to-end viable mission concept on currently available launch vehicle
- Flexible launch dates starting in 2031 through 2038+
- No new technologies required; Low-Medium risk
- Neptune:
 - 2029 Jupiter gravity assist not viable; trajectory/fuel/power not adequately demonstrated; higher risk.
 - New gravity-assist window in 2040s.

Technical readiness differs substantially

Uranus Orbiter and Probe

- End-to-end viable mission concept on currently available launch vehicle
- Flexible launch dates starting in 2031 through 2038+
- No new technologies required
- Low-Medium risk (only large mission TRACEd to receive this)

Neptune Odyssey

- Lacks demonstrated trajectory and launch date within the decade on currently available launch vehicle
- Uncertainties in power requirements and possible need for solar electric propulsion if neither SLS nor Jupiter gravity assist are available
- Accommodation on current launch vehicles unclear (faring size)

31

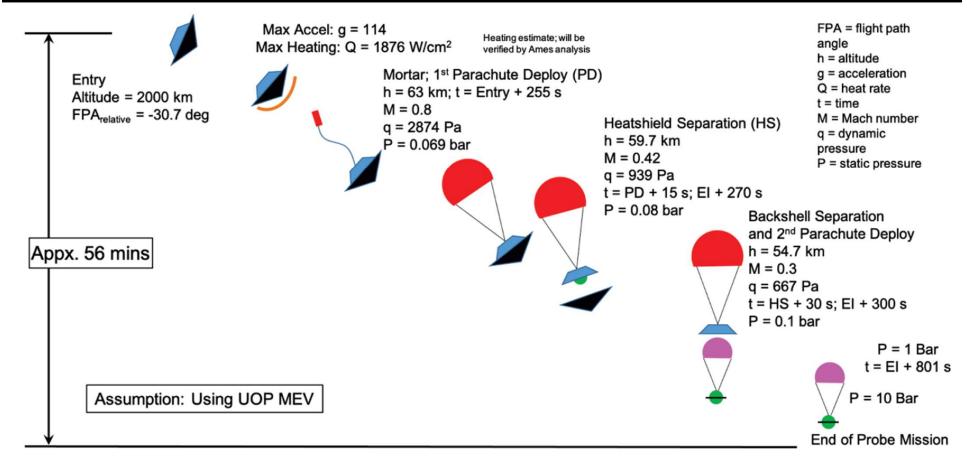


Exhibit 3-34. Probe Trajectory Concept of Operations.

LEICESTER