

Integrated Modeling of a Segmented-Telescope Habitable Worlds Observatory Structural, Control, and Optical Key Findings and Derived Design Guidance

AUGUST 10, 2023 ALAIN CARRIER, LARRY DEWELL, MICHAEL JACOBY, KIARASH TAJDARAN

Outline

- Motivations
- Summary integrated modeling infrastructure
- LUVOIR-B use-case
- Point design bottoms-up performance predictions
- Design Guidance for VIPPS-Enabled HWO Dynamic Stability
- Dynamic line-of-sight and wavefront error bottoms-up error budgets
- Discussion: Control-Structure Interaction Driven Segment-Alignment Control Bandwidth Limitation

Motivation: Modeling to map observatory design to coronagraph contrast performance

- Coronagraph instrument science yield and sensitivity is dependent on a stable LOS to target star and wavefront over long integration times
- The Habitable Worlds Observatory (HWO) will involve multiple interacting systems for controlling opto-mechanical stability, and will be impossible to test on the ground at system level
- Tightly coupled interdependencies require system-level evaluation of design alternatives and component sizing
- NASA and Industry Partners require powerful, rigorous and multi-disciplinary integrated modeling tools to enable <u>model-based design</u> early, and support observatory software development and <u>system-level verification</u>

Summary Integrated Modeling Capabilities

- Combined structural, control, and geometric optics
- System analyses in time and frequency domain
 - Matlab/Simulink-based; Model structured to facilitate linearization
- Structural model reduction
 - Anchored in line-of-sight and wavefront error metrics
- Non-contact Vibration Isolation & Precision Pointing System (VIPPS) performance predictions
 - Parametric representation facilitates trades/sizing
- Slew and settle analyses
 - Flexible body dynamics in large rotation
- Payload line-of-sight stability and dynamic wavefront error bottoms up performance predictions
- Derived design guidance and sensitivity studies
- Support for Coronagraph Technology Roadmap top-down yield analysis

LUVOIR-B Structural

Dynamics Model

Dynamics Response (LM) → Contrast (Axel Potier SCDA)

Use Case: Segmented telescope with VIPPS Interface, With Path to Multiple-Architecture Analysis of Alternatives/

- Early IROUV architecture concepts described in Astro 2020 Decadal include diverse architectures
 - Segmented versus monolithic Primary Mirror
 - External occulter versus internal coronagraph instrument
 - Observatory torque actuation via micro-thrusters versus Control Moment Gyros (CMGs)
- LM-led TechMAST team focused on performance prediction of 8-meter segmented telescope with <u>non-contact Vibration Isolation and Precision Pointing</u> <u>System (VIPPS)</u>
 - Leverages LM prior development in Disturbance Free Payload (DFP) non-contact observatory architecture
- However, modeling architecture and tools are applicable to multiple architecture to support future evaluations of alternatives

Vibration Isolation & Precision Pointing System (VIPPS)

Demonstrated on Split Bus Architecture with Flexible Appendages

- Architecture for Payload precision pointing and vibration isolation from host spacecraft
 - Spacecraft follows Payload
- Based on simple high-TRL components
 - Non-contact inductive position sensors
 - Sensors provide information on relative pose between spacecraft and payload for spacecraft attitude and position control

Large gap non-contact voice-coil actuators

- Actuators provide means to point Payload by reacting force on spacecraft based on Payload pointing sensor information or instructions without compromising vibration isolation
- Variations on architecture for pointing only-VIPPS instead of full 6-degree-of-freedom VIPPS

Summary of Integrated Modeling Key Findings: Point Design and Bottoms-Up Performance

Summary of Integrated Modeling Key Findings: Design Guidance for VIPPS-Enabled HWO Dynamic Stability

- Analysis of the integrated observatory structure, VIPPS rigid-body control, Fine Steering Mirror (FSM) LOS control, and
 optical sensitivities resulted in significant insights into important areas to focus design, and key trades to execute
 - Design guidance summarized in final report
- Some significant design guidance findings are summarized in the table below

Key Design Guidance Area	Summary Description
VIPPS interface placement	This Study placed non-contact interface between instrument subassembly and multi-axis gimbal mechanism. Placement of VIPPS interface directly behind the telescope support structure could facilitate higher control bandwidth and reduced interface range of travel
VIPPS non-contact actuator drive noise	Drive noise is a significant contributor to WFE instability; minimizing its impact requires low-noise current sense amplifiers and linear drives. Trade exists between drive noise amplitude and observatory repointing agility
VIPPS interface cable stiffness	Minimize harness stiffness: incorporate wireless data/power transfer, and single-turn service loops for power
VIPPS Interface cable rate damping	Close knowledge gap on extent to which rate damping is present at frequencies 10x or more above coupled system resonance.
Fine Steering Mirror (FSM)	FSM-based LOS control is required for low-frequency disturbance rejection, and decouple VIPPS control bandwidth from settling time requirements; direct control from HDI LOS error measurement; passive reaction-cancelling design
Spacecraft Momentum Exchange Device Isolation	Passive isolation of momentum exchange devices (Honeywell M-160 CMGs considered in this study) are necessary; optimal WFE stability depends on proper placement of corner frequency and low isolation floor

Inertial Line-Of-Sight Instability Error Budget

Inertial Line-Of-Sight Instability: 300 uasec (1 σ) Per Axis

			Errc	or Source	Projected [uasec (1 σ)]	Comments/Assmptions
1			Voice-Coil	Current Drive Noise	6	 One-sided noise spectral density: (1.0 uA/sqrt(Hz))/2.25
2	PS		Actuators	D/A Quantization	1	 Least-Significant Bit: (183 uA/bit)/16
3	VIF		Relative	Noise	1	 One-sided noise spectral density: 16.38 nm/sqrt(Hz)
4			Sensors	A/D Quantization	2	• Least-Significant Bit: (0.366 um/bit)/8
5	craft		Momentum	Exchange Devices (e.g. CMG)	13	 Honeywell M160 CMG IV: 6000 rpm Vibration isolation system: 20-Hz natural frequency; Q=4
6	ace(Fuel Slosh		50	 Allocation; >74-dB rejection below 1 Hz from VIPPS + FSM
7	Sp		Spacecraft A	ttitude Control System Jitter	50	 Allocation; >74-dB rejection below 1 Hz from VIPPS + FSM
8				Actuator Current Drive Noise	69	• One-sided noise spectral density: 1.0 uA/sqrt(Hz) [6 N/Amp force constant]
9			Fine Steering Mirror	Actuator Command Quantization	24	 Least-Significant Bit: 61 uA/bit
10				Relative Position Sensor	0	 Not used in steady-state observation: Feedback on HDI (no inner loop) One-sided noise spectral density: 11.91 nrad/sqrt(Hz)
11	Payload		High Definition Imager Noise Attitude Determination System Active Alignment Mechanisms		145	 One-sided noise spectral density: 46 uasec/sqrt(Hz) in object space (1/20 pixel resolution at 6.45 masec/pixel in visible) Pointing data update rate: 100 Hz
12					84	 Noise: 60 uarcsec (1 σ) DC to 0.1-Hz under steady-state pointing VIPPS Payload inertial attitude control bandwidth: 36.5 mHz
13					50	 Allocation Mirror segment alignment system; Secondary Mirror alignment system
14			Margin		221	•
		Total (Root-Sum-Squares)			300	

Driver Not-Modeled

Dynamic Wavefront Error Budget

LOCKHEED MARTIN LOCKHEED MARTIN UF CPSSL ILLINOIS INSTITUTE OF TECHNOLOGY

Dynamic Wavefront Error: Threshhold: 50 pm (1 σ); Goal:10 pm (1 σ)

Error Source					Projected [pm (1 σ)]		Commonte (Accountions	
					<25 Hz	>25 Hz	Comments/Assmptions	Driver
1			Voice-Coil	Current Drive Noise	34.1	12.6	 One-sided noise spectral density: (1.0 uA/sqrt(Hz))/2.25 	Not-Modeled
2	PS		Actuators	D/A Quantization	4.3	1.6	 Least-Significant Bit: (183 uA/bit)/16 	
3	VIP		Relative	Noise	1.8	0.2	 One-sided noise spectral density: 16.38 nm/sqrt(Hz) 	
4			Sensors	A/D Quantization	3.6	0.3	 Least-Significant Bit: (0.366 um/bit)/8 	
5	ecraft		Momentum	Exchange Devices (e.g. CMG)	27.6	1.6	 Honeywell M160 CMG IV: 6000 rpm Worst case phasing across excitation degrees-of-freedom Vibration isolation system: 20-Hz natural frequency; Q=4 	
6	pac		Fuel Slosh		1.0	1.0	Allocation	
7	Spacecraft Attitude Control System Jitter 1.0 1.0 • Allocation		Allocation					
8			Fine Steering Mirror	Actuator Current Drive Noise	4.1	3.2	 One-sided noise spectral density: 1.0 uA/sqrt(Hz) [6 N/Amp force constant] 	
9				Actuator Command Quantization	1.5	1.1	• Least-Significant Bit: 61 uA/bit	
10	q			Relative Position Sensor Noise	0.0	0.0	 Not used in steady-state observation: Feedback on HDI (no inner loop) One-sided noise spectral density: 11.91 nrad/sqrt(Hz) 	
11	ayloa		High Definition Imager Noise		1.8	1.3	 One-sided noise spectral density: 46*uasec/sqrt(Hz) in object space Pointing data update rate: 100 Hz 	
12			Attitude Determination System Active Alignment Mechanisms		1.0	1.0	 Allocation Noise: 60 uarcsec (1 σ) DC to 0.1-Hz under steady-state pointing VIPPS Payload inertial attitude control bandwidth: 36.5 mHz 	
13					10.0	10.0	 Allocation Mirror segment alignment system; Secondary Mirror alignment system 	
14			Margin		10.0	5.0	•	
				Total (Root-Sum-Squares)	46.7	17.5	• Combined low & high: 49.9 pm (1 σ)	

Segment-Alignment Control Bandwidth Limitation--**Control-Structure Interaction**

- Segment alignment control system not yet part of integrated model
 - Major open task
- Rule of thumb: segment alignment control bandwidth in segmented optical systems limited by control structure interaction to 1/5 to 1/10 of primary mirror assembly fundamental structure frequency
 - Observation supported by experience on segmented ground telescopes and laboratory demonstrators
 - Fundamentally a control system stability matter, not an alignment performance regime matter
 - Large ratio of actuated mass (mirror segments) over reaction mass (support structure) drive extent of control-structure interaction
- Top figure shows Payload modal distribution; Bottom figure counts number modes contributing most to wavefront error for LUVOIR-B point design
 - Fundamental mode about 1.5 Hz; 48 flexible modes below 10 Hz
 - 10 modes below 6 Hz amongst major wavefront error contributors
- Project segment-alignment control bandwidth on LUVOIR-B point design limited to less than 1 Hz: means totality of dynamics wavefront errors in prior error budget is in uncontrollable category
 - Not within deformable mirror or segment alignment bandwidth

Backup

TechMAST: Technology Maturation for Astrophysics Space Telescopes Starlight Suppression Workshop

Tightly coupled interdependencies require system

Finite Element Model Upgrades

- IROUV model updated to include a representation of a distributed VIPPS interface (2022-2023 model)
 - Original model assumed an interface which was collapsed to two coincident nodes (2021 model)
- Model not intended to be an actual proposed interface design, but rather have features and behaviors that may be present in a realistic design, particularly
 - Local flexibilities within interface module
 - Non-collocated actuators and sensors
- All modeling to date assumes that during an observation, the articulation mechanisms & structure between payload and spacecraft are locked
- Typical high-TRL materials used
 - M55J/cyanate ester composites
 - Ti-6Al-4V fittings
- Section sizing based on engineering judgment and experience for now

Non-Contact Interface model captures representative geometry, distributed structure, and standardizes conventions

Dynamics: Transition from Low to High-Spatial Frequency Contribution

In Dynamics World, Transition From Low to High Spatial Frequency is Relatively High in Temporal Frequency: Visually About 25-Hz

Payload Structural Model Inspection From <u>Dynamic Wavefront Error</u> Perspective

- Analyzed payload structural modes contribution to dynamic wavefront errors from joint controllability/ observability perspective using (VIPPS voice-coil actuator forces) as excitation source and (Payload dynamic wavefront error) as response
- Choice of actuation forces as source justified because VIPPS is only load path between spacecraft and payload
- Controllability captures propensity for mode to being excited by loads applied to payload at VIPPS interface
- Observability captures propensity for each mode to contribute to line-of-sight errors
- Covers 2372 flexible modes with modal frequencies ranging from 1.468 Hz to 199.78 Hz; mode 1000 is near 95 Hz
- Graphic shows payload modes joint controllability/ observability versus payload mode number
 - Modes are numbered in order of increasing natural frequency
 - First 220 modes contributing most to dynamic wavefront errors are highlighted in red (associated threshold is around 18 pm/uN or 13,000 times below dominant mode participation)

Payload Balanced Model Order Reduction From <u>Dynamic Wavefront Error</u> Perspective (1 of 2)

- Ranked payload structural modes in terms of their joint controllability/observability index value from (VIPPS voice-coil actuator forces) to (Payload dynamic wavefront error) perspective
 - Choice of actuation forces as input justified because VIPPS is only load path from spacecraft to payload
 - Controllability captures propensity for mode to be excited by loads applied to payload at VIPPS interface
 - Observability captures propensity for each mode to contribute to line-of-sight errors
- Graphic shows payload model order versus joint controllability/observability threshold
- Payload reduced model order: about 200 modes when setting threshold at 10 pm/uN (captures all modes with contribution down to 87 ppm from that of mode contributing most to wavefront errors)

Joint Controllability/Observability Provides Quantitative Criterion For Ranking Importance of Each Payload Mode From Dynamic Wavefront Error Contribution Perspective

Payload Balanced Model Order Reduction From <u>Dynamic Wavefront Error</u> Perspective (2 of 2)

- Cumulative contribution from many modes with dynamic wavefront error participation could still be significant
- Chart investigates that question
- Graphic shows cumulative contribution to joint controllability/observability metric of all modes excluded from model versus model order
 - Modes selected in descending joint controllability/observability index order
 - Including 220 modes in reduced order model would ensure 98.7% of dynamic wavefront errors are captured according to metric

Retaining 220 Modes in Payload Model Would Achieve Manageable Model Complexity While Capturing Dominant Portion of Dynamic Wavefront Errors

Design Departure Point

HWO Reference Coordinate Systems

Physical Parameter	Value				
Spacecraft bus mass	Mb=7,518 kg				
Bus center of mass location	OsBo=(0.0082 m) S1 + (0.0759 m) S2 + (0.0603 m) S3				
Spacecraft bus central inertia dyadic resolved in "S"	IIb=[2.3271 -0.0011 -0.0008 -0.0011 2.3160 -0.0086 -0.0008 -0.0086 4.5634]*1E5*kg*m ²				
Spacecraft-To-DFP Interface location	OsOd1=(0.000 m) S1 + (1.2045 m) S2 + (1.3528*m) S3				
Payload mass	Mp=12,026 kg				
Payload center of mass location	OpPo=(0.2017 m) P1 + (2.0123 m) P2 +(1.8906 m) P3				
Payload central inertia dyadic resolved in "P"	IIp=[2.5280 -0.0016 -0.0003 -0.0016 1.8958 0.2805 -0.0003 0.2805 1.0408]*1E5*kg*m ²				
Payload-To-DFP Interface location	OpOd2=(0.2081 m) P1 + (-2.0688 m) P2 + (-1.0784 m) P3				
DFP actuator mount radius	Ra=37.8 cm				
DFP voice-coil actuator stroke	Sa=+/-10 mm				
DFP voice-coil actuator average force constant	Ka=5 N/A				
Ref: "data_transfer_v3_stiff-sc.mat" dated 01/13/2023					

Design Departure Point (1 of 2)

Driver

	Habitable World Observatory: Spacecraft/Payload Non-Contact Design Baseline						
			Sele	ect Parameters	Value	Comments/Assmptions	
1	Actuator Mounting Radius			ator Mounting Radius	37.96 cm	•	
2			ators	Stroke	+/-10 mm	 Increases at lower relative pose control bandwidth for given slew agility 	
3				Gap	12 mm	 Gap between coil assembly and field assembly at mid-stroke 	
4			Actu	Force Constant	5.0-5.5 N/Amp	 Varies over range; same as Back-EMF constant in SI units 	
5			Coil	Peak Force	30 N	 Driven by slew agility and cable preset 	
6			/oice	Continuous Force	15 N	• Driven by cable preset	
7			ract \	Current Drive Peak Current	6.0 Amp	•	
8			Conti	Current Drive Bandwidth	160 Hz	• 0-dB loop cross-over	
9			Non-	Current Drive Noise	1 uAmp/sqrt(Hz)	One-sided noise spectral density	
10	S		-	D/A Quantization	183 uAmp/bit	• Least-Significant Bit; 16-bit D/A	
11	VIPF		ct tion	Range	+/-12 mm	 Increases at lower relative pose control bandwidth for given slew agility 	
12			onta Posi	Noise	16.38 nm/sqrt(Hz)	 Resolution: 366 nm over 500-Hz bandwidth 	
13			lon-C ative	A/D Quantization	366 nm/bit	• Least-Significant Bit; 16-bit A/D	
14			N Rela	Bandwidth	30 kHz	•	
15				Digital Logic Update Rate	1 kHz	•	
16			E	Payload Inertial Attitude Control Bandwidth	36.5 mHz	 0-dB loop cross-over Limited by Payload compliance in load path between VIPPS and telescope 	
17			Syste	Spacecraft/Payload Relative Position Control Bandwidth	14 mHz	• 0-dB loop cross-over	
18			ontrol	Spacecraft/Payload Relative Attitude Control Bandwidth	3.8 mHz	• 0-dB loop cross-over	
19			ŭ	Spacecraft/Payload Relative Pose Estimator Bandwidth	0.2 Hz	• -3-dB point	
20				Gain Stabilization Quad Filter	0.1 to 0.3 Hz	Second-order low-pass filter poles natural frequency	

Design Departure Point (2 of 2) Habitable World Observatory: Spacecraft/Payload Non-Contact Design Baseline

Select Parameters			ect Parameters	Value	Comments/Assmptions	
1	0		Coup	oled System Natural Frequency	0.4 to 1.1 mHz	 Based on Spacecraft and Payload rigid-body mass properties
2	Cable		Effective Linear Stiffness 0.10 to 0.1			•
3	ace (Effec	tive Rotational Stiffness	0.9 to 1.3 N*m/rad	•
4	Interfa		Viscous Damping Cut-Off Frequency		10*Fn	 Modeling means to acknowledge dominantly position-dependent (friction) nature of damping in cables 10 x coupled system natural frequencies
1			nent es	Number Of Units	4.00	• Single axis Honeywell M160 CMG IV: 6000 rpm nominal; Pyramid configuration
2	t		Mon scope	Peak Torque	87 N-m	• Each unit; Direct drive
3	craf		ntrol Gyro:	Max Angular Momentum	200 N-m-sec	• Each unit
4	pace		CO	Vibration Isolation System	20 Hz; Q=4	 Natural frequency and amplification at resonance
5	S	Attitude Control Bandwidth			3.84 mHz	Mode 1: Inertial attitude; Attitude Control System unused in Mode 3
6			Fundamental Structural Natural Frequency		0.12 Hz	• Sunshield mode
1				Mirror Clear Aperture Diameter	23 cm	•
2			1 Irro	Tip/Tilt Control Bandwidth	50 Hz	 Inner loop on local relative position sensor: closed-loop -3 dB
3			ng N	Actuator Current Drive Noise	1 uA/sqrt(Hz)	Actuator force constant 6 N/Amp
4	ad		Steer	Actuator Command Quantization	61 uA/bit	• Least-Significant Bit; 16-bit D/A
5	aylo		Fine	Relative Position Sensor Noise	11.91 nrad/sqrt(Hz)	• Zeroed in steady-state observation to mimic feedback on HDI (no inner loop)
6	┛			Line-Of-Sight Control Bandwidth	2.0 Hz	Outer loop: 0-dB loop cross-over; Type-II logic
7	Fundamental Structural Natural Frequency		1.46 Hz	Secondary mirror boom		
8	8 Compliance in load path from VIPPS interface to telescope		0.4 Hz	• First transmission zero		

Spacecraft Vibration Transmissibility

Spacecraft Vibration Transmissibility To Payload Inertial Pose State: Pointing; Mode 3: Standalone; Actuator Current Drive Bandwidth: 160 Hz

- Graphic compares transmissibility from spacecraft vibrations to payload inertial pose referenced to payload center of mass in rigid-body and flexible-body cases from VIPSS vantage point
 - Control logic in standalone mode: VIPPS responsible for payload inertial pointing, relative position control, and spacecraft relative attitude control
 - Integral control enabled
 - Cable stiffness cancellation enabled
 - VIPPS uses spacecraft reaction-wheels as additional set of actuators
 - Standalone control logic is fully decoupled at VIPPS interface

Transmissibility analysis shows

- Decoupling from spacecraft inertial translation and rotation motion to payload inertial attitude
- Integral control logic and cable stiffness cancellation logic work as expected
- Rigid-body: attenuation limited by voice-coil actuator back-emf above 1 Hz and by cable stiffness below 1 Hz
- Deviation from rigid-body response dominated by compliance in VIPPS load path

Transmissibility dominated by compliance in VIPPS load path above 0.1 Hz

Spacecraft Vibration Transmissibility To Line-Of-Sight Error

State: Pointing; Mode 3: Standalone; Actuator Current Drive Bandwidth: 160 Hz; No Payload Line-Of-Sight Control

10²

 Graphic compares transmissibility from spacecraft vibrations to payload optical line-of-sight error in rigid-body and flexible-body cases

LOCKHEED MARTIN

OF TECHNO

- Control logic in standalone mode: VIPPS responsible for payload inertial pointing, relative position control, and spacecraft relative attitude control
 - Integral control enabled
 - Cable stiffness cancellation enabled
 - DFP uses spacecraft reaction-wheels as additional set of actuators
- Standalone control logic is fully decoupled at VIPPS interface
- Payload Fine-Steering-Mirror-based line-of-sight control disabled

Transmissibility analysis shows

- Payload attitude error dominates payload optical line-of-sight error below 0.03 Hz as expected (up to numerical accuracy)
- Rigid-body: performance limited by voice-coil actuator backemf above 1 Hz and by cable stiffness below 1 Hz
- Flexible-body: transmissibility typically less than -49 dB except between 1 and 2 Hz; transmissibility less than -63 dB above 10 Hz

Typically Achieves 49 dB Vibration Disturbance Rejection in Absence Of Payload Attitude Sensing Errors

Spacecraft Vibration Transmissibility To Line-Of-Sight Error

State: Pointing; Mode 3: Standalone; Actuator Current Drive Bandwidth: 160 Hz; Line-Of-Sight Control

LOCKHEED MARTIN

Transient Response

Example Transient Response: Impact of VIPPS Actuation and Relative Position Sensing Noise on Optical Line-Of-Sight (1 of 2)

- Graphic shows optical line-of-sight error during small recentering activity at VIPPS interface
 - Control logic in standalone mode: VIPPS responsible for payload inertial pointing, relative position control, and spacecraft relative attitude control

LOCKHEED MARTIN

- Random initial relative pose error between spacecraft and payload
 - Relative position: [0.9964; -0.0024; 0.1474] mm
 - Relative attitude: [0.0 0.0 0.0] deg
- Actuator linear drive current noise: 1 uA/sqrt(Hz)
- Actuator command D2A quantization: 183 uA/bit
- Relative position sensor noise: 16.38 nm/sqrt(Hz)
- Relative position sensor quantization: 0.3662 um/bit

Observed optical line-of-sight errors

- <2.8 nrad (577 uasec) 0-peak after 250 sec</p>
- [1.07 1.10] nrad ([221; 228] uasec) (1 σ) after 250 sec
- Modal excitation 72 uasec 0-to-peak typical at 1.47 Hz

Optical Line-Of-Sight Errors in initial transient use-case dominated by low-frequency drift of [0.22; 0.23] masec (1 σ) after 250 sec

Example Transient Response: Impact of VIPPS Actuation and Relative Position Sensing Noise on Optical Line-Of-Sight (2 of 2)

- Graphic shows optical line-of-sight error during small recentering activity at VIPPS interface with FSM enabled
 - Control logic in standalone mode: VIPPS responsible for payload inertial pointing, relative position control, and spacecraft relative attitude control

LOCKHEED MARTI

OF TECH

- Random initial relative pose error between spacecraft and payload
 - Relative position: [0.5637; -0.1743; -0.4679] mm
 - Relative attitude: [0.0 0.0 0.0] deg
- Actuator linear drive current noise: 1 uA/sqrt(Hz)
- Actuator command D2A quantization: 183 uA/bit
- Relative position sensor noise: 16.38 nm/sqrt(Hz)
- Relative position sensor quantization: 366.2 nm/bit
- Fine Steering Mirror actuator noise: 1.0 uA/sqrt(Hz)
- Observed optical line-of-sight errors

 [0.347 0.348] nrad ([71.5; 71.9] uasec) (1 σ)

FSM reduces Optical Line-Of-Sight Errors in initial transient to less than 72 uasec (1 σ)