

Modeling and Error Budgets: The Roman Space Telescope Coronagraph Instrument (CGI)

John Krist¹, Bijan Nemati², Brian Kern¹ CGI Modeling Team @ JPL Roman Modeling Team @ GSFC

¹Jet Propulsion Laboratory/California Inst. of Technology ²Tellus1 Scientific, LLC

WARNING HIGH DIFFRACTION ZONE

CORONAGRAPHS REQUIRED AT ALL TIMES

Fundamental Coronagraph Characteristics

- Starlight suppression
 - How dark is the field around the star (the dark hole)?
- Throughput
 - How much exoplanet light ends up on the detector?
- Stability
 - How sensitive is the coronagraph to time-dependent variables (e.g., low-order aberrations, pointing errors)?

Modeling: How dark, how stable?

No coronagraph

Coronagraph & Wavefront Control

How dark a dark hole? Diffraction modeling:

- System aberrations (e.g. defocus)
- Optical surface errors (polishing, coating)
- Mask errors & misalignments
- Polarization-dependent errors
- High & low order wavefront control

How stable is the system over time? Structural/thermal/optical (STOP) modeling:

Target - Reference

• Solar incidence changes

Reference star

- Heat dissipation (mechanism motions, electronics)
- Heater control loops
- Reaction wheel speed changes
- Low order wavefront control (pointing)

Roman+CGI Unfolded Layout

Broadband image = multiple monochromatic images x 4 polarization components

Optic polishing errors

Polarization-dependent aberrations

Masks

SPC pupil mask

HLC focal plane mask

Synthetic

Measured

CGI Wavefront Control

Hybrid Lyot Coronagraph, λ =546-604 nm

The same wavefront control algorithms are used in the models, testbeds, and on-orbit

Observing Scenario 11 Timeline

OS Time Series Computation Process

OS11 Low-Order Aberration Variations (before LOWFS correction)

OS11 Pointing Jitter

OS 11 Time Series with Jitter HLC (λ=546-604 nm), with jitter & LOWFS corrections

Time series data (HLC, SPC-Spec, SPC-WFOV) available at roman.ipac.caltech.edu

OS11 Simple Post-Processing Simulations HLC (λ =546-604 nm)

Error Budget Fundamental Properties

Before making an error budget, you must decide on:

- The Observing Scenario
- The Error Metric
 - A single value that can summarize how good the performance is
 - Defined in the context of the observing scenario

Flux Ratio

- The **signal** (*S*) is proportional to the Flux Ratio:
 - It is in counts (electrons):

 $S = \xi_{pl} \cdot F_{star} \cdot throughput \cdot time$

• So the astrophysical quantity of interest is:

$$\xi_{pl} = \kappa \cdot S$$
 where $\kappa \equiv \frac{1}{F_{star} \cdot throughput \cdot time}$

$\xi_{pl} \equiv \frac{\Phi_p}{\Phi_*} \quad \text{Planet} \\ \text{Flux Ratio} \quad \text{Exo system LOS} \\ \Phi_* \quad \Phi_* \quad$

Flux Ratio:

Flux Ratio Noise – The Error Budget Metric

- The flux ratio is given by:
- The Error Budget is based on measuring this with the smallest error
 - So we define **flux ratio noise (FRN)** as the error budget metric.
- FRN can be obtained by taking the differential of the above and using root sum square (⊕) instead of (+) and (-)
 - True when the errors are independent

Error Budget Flowdown from the Top

Roman CGI Error Budget

Model Validation & Verification

- Numerical models vs JPL Testbed
 - Aberration sensitivity
 - Dark hole contrast
 - EFC convergence rate
 - Initial DM patterns

See Zhou et al., SPIE Proc., 11443 (2020) Also, see Alice Liu's talk on Thursday for STOP validation

- Error budget vs Numerical models
 - Comparison using OS6 results
 - Numerical model measurements
 - Analytical model statistics

See Nemati et al., JATIS (submitted) (2023)

r λ/D	Analytical Model FRN	Numerical Model FRN	Error
3-4	0.79	0.79	0%
4-5	0.56	0.47	19%
5-6	0.38	0.38	0%
6-7	0.38	0.36	5%
7-8	0.33	0.40	-16%
8-9	0.33	0.48	-31%

Summary

- We've been modeling CGI for 10 years to levels never previously attained
 - Using resources only available for flight projects
 - Models have been validated against testbed experiments
 - The algorithms, tools, and experience are directly applicable to HWO
- Because the coronagraph will not be tested with the actual telescope, modeling is critical for on-orbit performance predictions
 - This will be the case for any large space telescope coronagraph
- Review of CGI modeling by Krist et al. submitted to JATIS
- Nemati et al. paper on CGI error budget submitted to JATIS
- Modeling talks & posters at upcoming SPIE