

Active NASA Investments in Starlight Suppression Technology

Brendan Crill ExEP Deputy Program Chief Technologist Jet Propulsion Laboratory, California Institute of Technology

Towards Starlight Suppression for the Habitable Worlds Observatory Workshop August 10, 2023

How is NASA investing in starlight suppression technology?

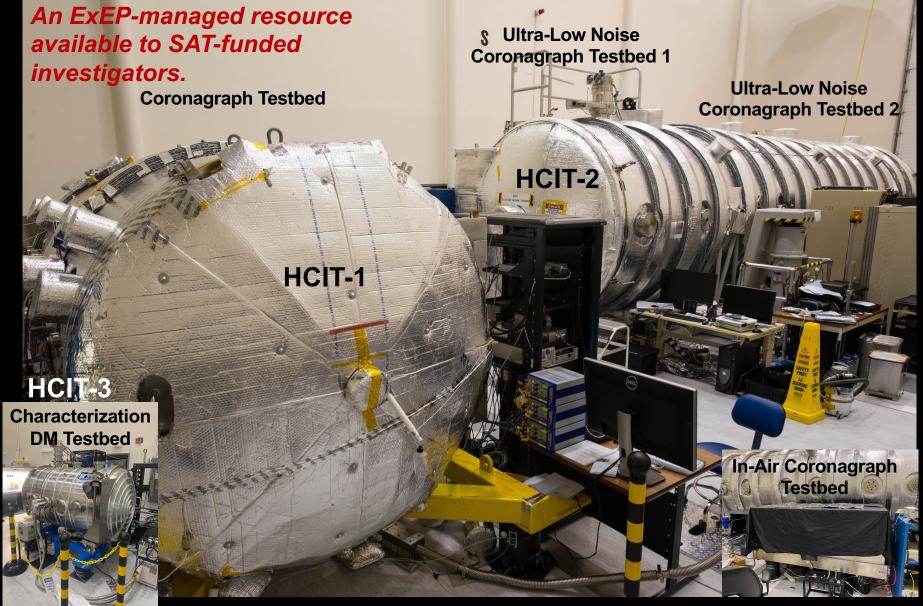
Competed Grants

- Astrophysics Research and Analysis (APRA)
- Roman Community Coronagraph Participation
- Nancy Grace Roman Fellowships
- Strategic Astrophysics Technology (SAT)

SAT program is designed to mature technologies in the mid-TRL (3-5) range for strategic astrophysics missions such as HWO

Competed Contracts

- System-Level Segmented Telescope Design (SLSTD) / Segmented Mirror Technology Program (SMTP)
- Small Business Innovation Research (SBIR)
 Phases I and II


Directed and Competed Activities

- Internal Scientist Funding Model (NASA-only internal competition)
- Starshade (transition to SAT)

Infrastructure

 Coronagraph Vacuum Operational Testbeds (High Contrast Imaging Testbed Facility)

High Contrast Imaging Testbed (HCIT) Facility

Active SAT Awards Addressing Coronagraph Contrast and Contrast Stability Using the HCIT

PI		202	23		202	4			202	.5			
Belikov (ARC)	PIAA	ACMC											
Belikov (ARC) (*)	Mult	Multi-star Wavefront Control											
Serabyn (JPL)	Vect	Vector Vortex Coronagraph											
Trauger (JPL)	Super Lyot Coronagraph												
Guyon (UA)	Linear Dark Field Control												
Mawet (Caltech)	Coronagraph/ Spectrograph Architecture												
Wallace (JPL)		Dua	Dual-purpose Coronagraph										
Cahoy (MIT)		Dai	Dark Hole Maintenar										
Riggs (JPL)			High Contrast with Black Silicon Masks										
Guyon (UA)			Self-Calibrating Coronagraph Systems										

(*) funded through ISFM

Active SAT Awards Addressing Coronagraph Contrast and Contrast Stability

Coronagraphs: demonstration in other testbeds

Ы		2023		202	24			202	25				
Soummer (STScl)	Systems Demo of Segmented Coronagraphy												
Trauger (JPL)			Low	v-orc	ler H	ardv	vare	Wav	efror	nt Sei	nse/	Conti	rol

Other Contrast Stability

Ы	2023		2024		2025	
Tesch (JPL)			vanced Wave erture Telesc		Control for Segme	nted
Marresse- Reading (JPL)		Coll	loid Thruster	r Life T	esting	

PI	2023		2024	2025			
Nikzad (JPL)		UV	Photon-counting d	etectors			
Bottom (UH)	Infrared photon-counting detectors						
Figer (RIT)	Vis-band CMOS detectors						
Rauscher/ McElwain (GSFC) (*)	Vis-band Skipper dete	ectors	5				

(*) funded through ISFM

Managed by Cosmic Origins (COR) Program

Managed by Exoplanet Exploration Program (ExEP)

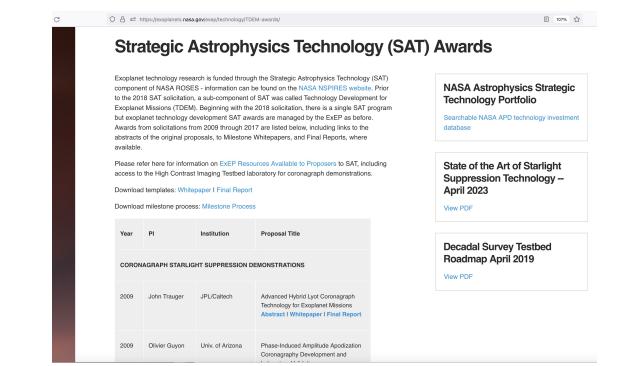
APRA-2022 Awards Relevant to HWO

Title	PI	Institution
Chip-scale Astrocomb for High Precision Spectrograph Calibration	Bagheri	JPL
Low Thermal Coefficient of Resistance Microchannel Plates	Elam	ANL
Dark-hole maintenance with the Self Coherent Camera	Haffert	Arizona
Photonic High-Resolution Broadband Spectrographs for Space-Based Astrophysics Missions	Jewell	JPL
Demonstrating a megapixel array of UV superconducting-nanowire single- photon Detectors	McCaughan	NIST
Advanced metamaterial-based structures for optical applications in the Far Ultraviolet	Quijada	GSFC
Ultra-Sensitive Kinetic Inductance Detectors for Low-Background Space- Based Astronomy	Rostem	GSFC
Scaling of single-photon sensor arrays through monolithic semiconductor- superconductor integration	Shanline	NIST

APRA-funded technology projects are typically at a lower maturity than SAT-funded projects.

Conclusions

- SAT Awards are currently the driving engine for maturing coronagraph technologies for HWO
 - SAT 2023 currently open on NSPIRES, no due dates yet listed; likely December 14
- Directed funds could be a strategy for future targeted efforts



BACKUP

Strategic Astrophysics Technology – managed by ExEP

 Investigators write a Milestone Whitepaper and a Final Report at the end; each is reviewed by our ExoTAC (Exoplanet Technology Assessment Committee)

