

Jet Propulsion Laboratory California Institute of Technology

Towards starshade yields for a 6m HWO telescope

Rhonda Morgan¹, Mario Damiano¹, Doug Lisman¹, Bertrand Mennesson¹, Eric Mamajek¹, Dmitry Savransky², Michael Turmon¹, Tyler Robinson³, Stuart Shaklan¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ²Carl Sagan Institute and Sibley School of Mechanical and Aerospace Engineering , Cornell University, Ithaca, NY ³Lunar and Planetary Lab, University of Arizona

> 8 August 2023 CL#23-4384

Pre-decisional: for discussion purposes only. © 2023 California Institute of Technology. Government sponsorship acknowledged

• We'll want to iterate, so be parametric to be computationally fast

Instrument model

Photometry Starlight suppression ~mission dynamics

Mission model

- Allocating resources: exposure time, mission time, fuel.
- Allocation strategies would be different for target-limited or time-limited scenarios.
- For time-limited, efficiency concerns lead to desire for optimization schemes.
- Optimization and scheduling is its own field

https://exoplanets.nasa.gov/exep/events/456/exoplanet-yield-modeling-tools-workshop/

MEETINGS & EVENTS

Exoplanet Yield Modeling Tools Workshop

Date:

June 8, 2023

Location: Splinter Session of AAS in Albuquerque, NM >> view map

Agenda: AAS242_splinter_agenda_yield_tools.pdf (127 KB)

REGISTER

June 8, 2023; 9am – 11am, 12:30 – 3:00pm

Chairs: Rhonda Morgan (NASA ExEP) and Dmitry Savransky (Cornell University)

About this Workshop

Downloads

- Agenda
- ExoVista Tutorial Materials
- EXOSIMS Tutorial Materials

Fundamental Concepts Videos

Pre-Session: Pre-recorded short talks on the fundamental concepts of yield modeling

Other Resources

Starlight suppression technologies from LUVOIR and HabEx reports

- Rhonda Morgan

- Pro: Can extract effectively *any* metric of performance with errorbars
- Con: Computationally costly

See: Savransky, Kasdin, and Cady, "Analyzing the designs of planet finding missions", 2010; Savransky and Garrett, "WFIRST-AFTA coronagraph science yield modeling with EXOSIMS", 2015

• Pro and Con: Requires a mission schedule

Standard Definitions and Evaluation Team

https://exoplanets.nasa.gov/exep/studies/sdet

Chartered to provide a consistent, transparent yield analysis using common input parameters

NASA

Figure 1. Characterization metric A facilitates a quick search for the water line at 940 nm with a

EXOPLANET PROGRAM About Studies News Meetings/Events Resources	Technology NExScI ExoPAG For the Public			
Standard Definition and Evaluation T Overview Two of the four large mission concept studies for the Astrophysics Decadal Survey were designed to directly image and spectrally characterize earth-like exoplanets. In 2016, the Astrophysics Division chartered an Exoplanet Standard Definition and Evaluation Team (ExSDET) for the purpose of providing an unbiased science yield analysis of the multiple large mission concepts using a transparent and documented set	Ceam Documents • SDET Charter • SDET Final Report		THE STANDARD DEFINITIONS AND EVALUATION TEAM FINAL REPORT A COMMON COMPARISON OF EXOPLANET YIELD	Thorough discussion of astrophysical inputs
 of common inputs, assumptions and methodologies. Over the course of the past three years, the ExSDET has responded to the direction provided in the charter and the required deliverables by performing the following tasks: Develop analysis tools that will allow quantification of the science metrics of the mission studies Incorporate physics-based instrument models to evaluate both internal and external occulter designs Establish the science metrics that define the yield criteria Cross validate the various analytical methodologies and tools Provide complete evaluations using common assumptions and inputs of the exoplanet yields for each mission concept. The primary goal of the SDET Final Report is to present the best understanding of the exoplanet imaging and characterization capabilities of the current STDT observatory and instrument designs, along with their nominal operating plans, using common input 	Cases • Case 1: HabEx 4H hybrid, metric C1 • Case 2: LUVOIR B, metric A • Case 3: HabEx 4C, metric C2 • Case 4: HabEx 4S, metric C2 Links • EXOSIMS on Github • AYO for LUVOIR • Habitable Exoplanet Observatory (HabEx)	Target List	National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. @2019. All rights reserved. Government sponsorship acknowledged.	
A. Water line R = 70, SNR = 5 B. Oxygen + Water R = 140, SNR = 10 C. 1 HabEx Full R = 70, SNR = 5 B. Oxygen + Water R = 140, SNR = 10 Spectrum R = 70, SNR = 5 B. Oxygen + Water R = 70, SNR = 10 Architectore Trade R = 70, SNR = 8.5 B. Oxygen + Water R = 70, SNR = 10 Spectrum R = 77, SNR = 5 B. Oxygen + Water R = 70, SNR = 10 Spectrum R = 70, SNR = 10 Spectrum A Spectrum A Spectrum A Spectrum A <th>(HabEX) Large UV-Optical-Infrared Surveyor LUVOIR EXOSIMS Overview in JATIS EXOSIMS Overview EXOSIMS Validation AYO 2014 AYO 2015</th> <th>Occurrence Rates ExoZodi Planet Types Planet</th> <th>HabEx Instrument Obs Scenario LUVOIR Instrument Obs Scenario</th> <th>Yield</th>	(HabEX) Large UV-Optical-Infrared Surveyor LUVOIR EXOSIMS Overview in JATIS EXOSIMS Overview EXOSIMS Validation AYO 2014 AYO 2015	Occurrence Rates ExoZodi Planet Types Planet	HabEx Instrument Obs Scenario LUVOIR Instrument Obs Scenario	Yield
D. LUVOIR Full R = 7, SNR = 5 R = 7, SNR = 8.5 R = 140, SNR = 8.5 R = 40, SNR = 10 300 400 500 600 700 800 900 1000 1100 1200 Wavelength (nm) Wavelength (nm) 1000 1000 1000 1000 1000 1000	AYO 2014AYO 2015AYO 2016 Starshades	Planet Properties	Instrument Obs Scenario	

Astro2020 recommendation for exoplanets

- Astro2020 recommended a "future large IR/O/UV telescope optimized for observing habitable exoplanets and general astrophysics" to be **ready by end of the decade**
- Astro2020 recommended "to search for biosignatures from a robust number of about ~25 habitable zone [exo]planets"

- Building on the work done by large concept studies and the Standards Evaluation Team, we can iterate, address nuances, and incorporate progress to map exoplanet science goals to planet characterization to metrics
- This will not be easy!
- Characterization is complicated, and will likely involve multiple measurements. ... This means we'll have more than one metric

Different yield metrics reveal different sensitivities

Metrics Bandwidth, SNR, R_s

<u>Architecture</u>

Observing Scenario

Prior Knowledge

Different yield metrics reveal different sensitivities

Metrics Bandwidth, SNR, R_s

Coronagraph – Water Search

Coronagraph – Broadband

Coronagraph + Starshade

Three characterizations per target is target limited

0.5

0.6

0.7

Wavelength (µm)

0.8

0.9

Triple characterizations are target and integration time limited

Water search and broadband: sensitivity to contrast, IWA

Starshade

Summary

- Coronagraph + starshade has high complementarity that provides high-quality, instantaneous 70% bandwidth spectra
- The initial point design concept of 65 mas IWA_{tips} is target limited, even for triple characterizations.
 - Plenty of slew transits remain available.
 - Rendezvous two years into the mission achieves equivalent yield
- Yield can be improved with smaller IWA

Passband versus properties

- LUVOIR and HabEx requirements based on modern Earth atmosphere
- Since then, Archean earth, preterozoic Earth with 1% O2 and 0.1% O2, Venus-like atmospheres studied

Take home messages

- Linking the molecular volume mixing ratio to the cloud properties is important for reflected light spectroscopy
 - ▶ To measure the above-cloud gas abundance
 - ▶ To constrain the cloud composition
 - > To explore the chemical composition of deeper atmospheric layers
- Near-IR wavelength band is crucial for the overall characterization of the atmosphere (CO₂ cannot be constrained with optical wavelength only)
- UV will be useful to detect and quantify O₂ and O₃ in those scenarios in which the contribution in the VIS wavelength band is not significant

Papers Spotlight Hu 2019 - ApJ 887, 166 Damiano & Hu 2020 - AJ 159,175 Damiano et al. 2020 - AJ 160,206 Damiano & Hu 2021 - AJ 162,200 Damiano & Hu 2022 - AJ 163,299

mario.damiano@jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

> © 2023 California Institute of Technology. Government sponsorship acknowledged.

Two metrics: sensitivity to diameter, contrast, IWA

Earths Characterized (D = 7m, Metric A)

Earths Characterized (D = 7m, Broadband)

max = 13.2

Earths Characterized (D = 8m, Metric A)

Earths Characterized (D = 8m, Broadband)

Joint distribution fit via Linear response surface models

A linear model (or fit) for yield works reasonably well, and reveals partial derivatives w/r/t contrast and IWA

- For water search metric, exo-Earth yield increases by about 4-6 for each λ/D drop in IWA (column 2)
- And exo-Earth yield increases by 6-13 for each decade in contrast (column 5)
- At or below log-contrast of 10, each decade in contrast is similar to $2\cdot\lambda/D$ in IWA (i.e., $\beta/\alpha \approx 2$)

Sensitivity of linear surface model to diameter

