

Coronagraph Testbed Results

Bertrand Mennesson Jet Propulsion Laboratory, California Institute of Technology & Emiel Por* Space Telescope Science Institute

© 2023 California Institute of Technology, government sponsorship acknowledged, CL# 23 4051. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Towards Starlight Suppression for the Habitable Worlds Observatory Workshop, Pasadena, CA August 8, 2023

* NHFP Sagan Fellow

Image credit: Mark Garlick, space-

Outline

- HWO Starlight Suppression MUSTs
- Coronagraphs "Static" Polychromatic Contrast Performance in the lab under vacuum (plain & segmented apertures)
- Contrast Stabilization on segmented apertures (in air)
- Overall State of Affairs

Near Term Priorities for Improving Coronagraph Technical Readiness for HWO

HWO Starlight Suppression System MUSTs

Detailed requirements yet to be derived. From previous studies and Astro2020 language:

- Must reach a minimum point source detection limit ∆mag ~ 25 at ~ 70 mas from FGK stars
 - That is 2 λ /D for λ =1 um and D= 6m (4 λ /D at 0.5 um)
 - Requires in-flight raw contrast < 10⁻⁹ there (a few 10⁻¹⁰?), with "high" off-axis throughput, high stability and a bandwidth >~ 20% per channel
 - Requires detectability of planets at or below speckles level \rightarrow contrast stability and /or data post-processing must reduce starlight residuals down to <~ 10⁻¹¹ level (1 σ)

• Must spectrally characterize exo-Earth candidates over broad λ range to

- Search for Rayleigh scattering, methane (high []), water vapor and oxygen \rightarrow 450-950 nm
- Search for low levels of oxygen via $O_3 \rightarrow$ down to 250 nm
- Search for methane (low []) and carbon dioxide \rightarrow up to 1800 nm

Coronagraphs Current Lab Performance: off-axis monolith (I)

Unobscured circular pupil with simple Lyot Coronagraph in vacuum: 4 x 10⁻¹⁰ contrast (1 polar), JPL HCIT Team – Decadal Survey Testbed (DST)

Over 10% BW, averaging from 3-10 λ /D, 360° DH ٠

30

10

Normalized Intensity (x10⁻¹⁰)

Seo, B.J. et al SPIE 2019

Allan, G. et al. 2022 in prep

Coronagraphs Current Lab Performance: off-axis monolith (II)

Unobscured circular pupil with Vector Vortex Coronagraph (VVC4) in vacuum: HCIT/DST Team

VVC4 offers Smaller IWA, higher throughput and resilience to aberrations than CLC

• 1.6 x 10 9 contrast over 10% BW, averaging from 3-8 λ /D, one-sided DH, 1 polar

 5.9 x 10 ⁹ contrast over 20% BW, averaging from 3-8 λ/D, one-sided DH, 1 polar

Performance limited by residual mask imperfections and chromatic retardance

Ruane, G. et al. SPIE 2022

Coronagraphs Current Lab Performance: off-axis segmented

Segmented Mask with no central obscuration Vector Vortex Charge 4 (VVC4) in vacuum: HCIT

one-sided DH, unpolarized light

Riggs, A.J. et al. SPIE 2022

Segmented aperture mask

3.6 x 10 ¹⁰ monochromatic contrast averaging from 3-10 λ /D:

4.7 x 10 9 10% bandwidth contrast averaging from 3-10 λ /D:

Coronagraphs Current Lab Performance: on-axis heavily obscured monolith: Roman CGI in HCIT

Hybrid Lyot coronagraph (HLC)

1.6 x 10 9 10% bandwidth contrast averaging from 3-10 λ/D with 2 polars

Shaped Pupil Coronagraph (spectro bow-tie mode)

4.1 x 10 9 10% BW contrast and 1.1 x 10 8 18% BW contrast averaging from 3-10 λ/D with 2 polars

7

Cady, E. et al. 2017

Coronagraphs Current Lab Performance: on-axis segmented

Segmented Pupil: 120 hexagons, central obscuration and spiders - Phase Induced Amplitude Apodization Complex-value Mask Coronagraph (PIAACMC) in vacuum: HCIT Testbed

• 1.9 x 10 ⁸ 10% bandwidth contrast averaging from 3.5-8 λ /D, one-sided DH, polarized light

Performance limited by coherent chromatic effects - which should be correctable according to wavefront control simulations

Coronagraphs Current Lab Performance: Summary

Coronagraph Static Performance in vacuum

Coronagraph Type	HWO goal	Classical Lyot	Vector Vortex charge 4	Vector Vortex charge 4	CGI HLC CGI SPC	Phase Induced Amplitude Apodization Complex Mask Coronagraph	
Aperture Type	Segmented	Circular unobscured (off-axis monolith)		Circular off-axis static segmented mask	Circular <mark>on-axis</mark> heavily obscured monolith	Circular on-axis static segmented mask	
Deformable Mirrors	2x 96 x 96	2 AOX each 48 x 48 act	2 AOX each 48 x 48 act	1 BMC MEMs (2k act)	2 AOX each 48 x 48 act	1 BMC MEMs 1k act	
Separation Range	3-45 λ/D	3-10 λ/D (5-13.5 λ/D)	3-8 λ/D	3-10 λ/D	3-9 λ/D	3.5 – 8 λ/D	
Dark Hole Azimuthal Extent (deg)	360	360 (180)	180	180	360 2x65	180	
Mean Raw Contrast over Sep. Range	few x 10 ⁻¹⁰	4 x 10 ⁻¹⁰ (idem)	1.6 x 10 ⁻⁹ (5.9 x 10 ⁻⁹)	4.7 x 10 ^{.9}	1.6 x 10 ^{.9} 4.1 x 10 ^{.9} (1.1 x 10 ^{.8})	1.9 x 10 ⁻⁸	
Central wavelength (nm)	TBD	550	635	635	550	650	
Spectral bandwidth	20%	10% (20%)	10% (20%)	10%	10% 10% (18%)	10%	
Number of polarizations	2	1	1	1	2	1	
Core throughput at $3\lambda/D$	high	medium-low	high	high	low	high	
Sensitivity to low order aberrations	low	medium	low	low	medium	medium	
Facility and Testbed		JPL HCIT-2 DST	JPL HCIT-2 DST	JPL HCIT-2 DST	JPL HCIT	JPL HCIT-2	
Vacuum Operation		Y	Y	Y	Υ	Y	

10

Triple trade: mean contrast vs contrast stability vs post-processing effectiveness

Parameter Value			<u> </u>						
Stellar type	Solar twin		00 Euuuu			$\overline{\mathbf{n}}$	\mathbf{m}	mm	шн
Stellar distance	12 pc	100	E	•	•	•	•		Ξ
Planet type	Earth twin	1	S/ E						Ξ
Planet semi major axis	1 AU		€ 50 E						
Planet illumination phase and flux ratio	Quadrature; resulting in 10 ⁻¹⁰ planet-to-star flux ratio		ΡĒ				/		=
Solar zodiacal light surface brightness at planet	23 Vmag/arcsec ²		.⊆ E						=
location			7 10 E						E
Exozodiacal light surface brightness at planet location	22 Vmag/arcsec ² for a 1 zodi solar analog	11	2 40 F					\sim	Ξ
Exozodi Level	3 zodis		5 E RC=10-9	9					Ξ
Telescope diameter	6m		Σ $E f_{\Delta I} = 0.005$)5				Þ	3
Central obscuration	None	10	≝ 30 ⊨~~	G					
Central wavelengths	0.5 μm, 0.61 μm , 0.74 μm, 0.91μm			9		A			Ξ
Spectral resolution	70		$E = E \frac{f}{KC=10^{\circ}}$	- 					E
End to end optical throughput (excluding all starlight	0.3		표 20 E 🐫 🖤		8				
suppression masks and detector quantum efficiency)			$\Psi ^{20} E_{RC=10^{-1}}$	10					Ξ
Radius of photometric aperture	0.7 λ /D (centered at planet location)		\Box E f _{Al} =0.05	5 🕞					=
Core throughput at planet location within photometric	Coronagraph dependent		ö E 🎇		B				E
aperture	0.36 at 3λ/D for VVC4		$\frac{9}{5}$ 10 $=_{PC-10^{-1}}$	10		N	Aennesso	on et al.	
Raw contrast at planet location	10 ⁻¹⁰ or 10 ⁻⁹		$\hat{\mathbf{u}} = \mathbf{E} \mathbf{f}_{\mathbf{u}} = 0$			ir	n nren		=
Differential imaging suppression effectiveness ($f_{\Delta I}$)	Varied between 0 and 0.05 (0 = shot noise limit)		E			. "	i picp		=
Detector quantum efficiency (QE)	0.9		ە قىيىيىت	սևոսո	ահոսու	<u>nhunn</u>	<u>uuluuu</u>	undunu	шпĒ
Detector noise	0		0.4	0.5	0.6	0.7	0.8	0.9	1.0
Number of polarizations instantaneously observed	2		0.1	1	Navelond	nth in m	icrons	0.0	1.0
Spectrocopic Signal to noise (on continuum)	10				waveleng	jui il ili			

- To characterize exo-Earths at 10⁻⁹ instrumental contrast rather than 10⁻¹⁰, better contrast stability and/or better data post-processing is required
- However, raw contrast degradation not only increases stellar shot noise. It also degrades contrast stability at a given perturbation level
 → better WF stability and / or post-processing required to work at 10⁻⁹ contrast
 11

Preparing for a highly complex observatory needs integrated full-system demonstrations

Segmented telescope simulator

Starlight suppression and wavefront control

Science channel & wavefront metrology

PAPLC coronagraph in broadband

monochromatic 2×10^{-8} , 2 – 13 λ /D

9% broadband 4.2×10⁻⁸, 2 – 13 λ **25% broadband** 9.5×10⁻⁸, 2 – 12 λ / D

Por et al. (in prep.)

Adding incoherent planet light

Emulated low-photon images

Dube et al. (in prep.)

Pourcelot et al. 2023

Dube et al. (in prep.)

Pourcelot et al. 2023

Perform data reduction on testbed data

Improved segmented telescope simulators

Latest 19 segment F/4 parabolic prototype (primary mirror for ASSIST funded for vacuum tests)

Overall State of Affairs

- HWO-required combination of contrast, bandwidth, IWA (and OWA) not yet demonstrated
 - Current best performance is $4x10^{-10}$ at > $3\lambda/D$ (10% BW) or > $5\lambda/D$ (20% BW) with *classical Lyot* Coronagraph on clear aperture
- Current best contrast performance is on clear apertures. Worsens when using:
 - Coronagraph with smaller IWA, higher throughput and better resilience to low-order aberrations (e.g. VVC4)
 - Segmented aperture
 - Centrally obscured aperture, whether monolithic (CGI) or segmented (PIAACMC)
- Sequential observations or parallel coronagraph channels required to cover large spectral BW (and possibly both polars)
- All lab experiments are visible. High contrast UV coronagraphy likely more challenging (throughput and contrast issues)

Some Near-Term Priorities for Improving Coronagraphs Technical Readiness toward HWO and Informing Upcoming Trades

- Push in-vacuum *static* contrast tests of simple Lyot coronagraphs on clear apertures to
 - Characterize and improve testbed environment ultimate limits using the simplest possible case
- Push in-vacuum *static* contrast tests of advanced coronagraphs (smaller IWA, better throughput and resilience to aberrations) on:
 - Clear apertures (diagnosis)
 - Segmented apertures (HWO baseline)
- Push in-vacuum dynamic contrast tests in the presence of induced perturbations
 - Without correction: validate theoretical contrast dependence to aberrations for different coronagraphs
 - With correction: test various WFSC systems for DH optimization, DH maintenance, and post-processing
- Key Technical Investments applicable to 3 points above: see Garreth Ruane's talk tomorrow
- Focus and sustain community efforts on 1-2 nominal apertures, with "bounding" WF stability cases ("the CGI effect")
 - Balance future efforts on established coronagraphs while testing smart new ideas (CDS activity, Belikov and Stark)
- Conduct optical simulations of UV coronagraphic performance and science yield with
 - Realistic end-to-end throughput from UV coronagraph beam train. Polarization cross-talk effects

Back-up

Benefits and Challenges of UV Coronagraphy

"The most sensitive indicator of atmospheric O₂ is the UV O₃ (Hartley-Huggins) band, which would have created a measurable impact on Earth's spectrum for ~50% of its history to date, versus ~10% for O2". *Schwieterman, E. et al. 2019*

However

- Planets are much fainter in the UV
 - UV Throughput is low ov reflectivity per surface is no better than 92% (for bare AI) and coronagraphs need many optics (15 on CGI)
- WFC reqts scale as λ
- Birefringence is generally higher in the UV, inducing incoherent "polarization aberrations"