



# **Ultra-Stable Observator**

### Roman Space Telescope: Stability Performance for Coronagraph 8/10/2023

Error Budget and Integrated Modeling Lead Kuo-Chia (Alice) Liu, Ph.D.

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 • SPACE TELESCOPE SCIENCE INSTITUTE • IPAC • EUROPEAN SPACE AGENCY •
 • JAPAN AEROSPACE EXPLORATION AGENCY • LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •



### **Acknowledgement: Roman IM Team**









- **RST:** Nancy Grace Roman Space Telescope (Class A)
- Mission: Wide-Field Infrared Survey
- Objectives:
  - Determine the nature of the dark energy that is driving the current accelerating expansion of the universe
  - Perform statistical census of planetary systems through microlensing survey
  - Survey the NIR sky
  - Provide the community with a wide field telescope for pointed observations
  - Fly a technology demonstration of a high-contrast coronagraph instrument
- Mission Duration: 5 years science
- Orbit: Quasi-Halo Orbit about Sun-Earth L2
- Launch Vehicle: Falcon Heavy
- Launch Site: Eastern Range
- Mission Budget: \$3.3 Billion through Phase E
- Mass: 10,750 kg (NTE)
- LRD: October 2026





FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 FY27 FY28 FY29 FY30 FY31

| Concept Development |         |     | Design, F       | Science Operations |        |              |            |  |
|---------------------|---------|-----|-----------------|--------------------|--------|--------------|------------|--|
| Pre-Phase A         | Phase A | Pha | Phase B Phase C |                    |        | Phase D      | Phase E    |  |
|                     |         |     | $\diamond$      | $\diamond$         |        |              | $\bigcirc$ |  |
|                     |         | MDR | MPDR            | MCDR               | SIK WI | ·IDel Launci | h EoM-P    |  |



### **Observatory Overview**







### **Integrated Payload Assembly (IPA)**







### Spacecraft









- CGI stability requirements flow from Flux Ratio Noise (FRN) error budget
  - Contrast sensitivities, derived from optical diffraction models set in PROPER tool, have been validated against the coronagraph testbed
  - MUF = 2 is used on sensitivities



.

•





- CGI relies on observatory stability to meet technology demonstration goals
  - Observatory is designed to meet Wide Field science requirements
- CGI stability requirements are met by using CGI internal controllers and observatory operational capabilities
  - LOS jitter rejection achieved by fast steering mirror (FSM) and low-order-wavefront-sensor (LOWFS)
  - WFE drift rejection through focus mechanism (FM) and deformable mirrors (DMs)
  - Constrain wheel speeds
  - Avoid moving HGA during exposures
  - CGI stability requirements only need to be met for ≥70% of images

|          |                      |                                     |               |                               | Coronagraph Stability (10-hour)               |                   |  |  |  |
|----------|----------------------|-------------------------------------|---------------|-------------------------------|-----------------------------------------------|-------------------|--|--|--|
|          |                      |                                     | LOS Pajaction | 1                             | Stability Requirements                        | Requirement       |  |  |  |
|          | Reaction Wheel       | معا                                 | (FSM + LOWFS) |                               | Filtered LoS Drift + Jitter [mas]             | 0.57 >70% of time |  |  |  |
|          | Disturbance          | Disturbances                        |               | <b>」</b> →                    | WFE Jitter Z4-11 [nm]                         | 0.25              |  |  |  |
|          |                      | WFE Rejection (FM<br>+ DMs + LOWFS) | 1 →           | Filtered Z4-11 WFE Drift [nm] | 0.15                                          |                   |  |  |  |
|          |                      |                                     |               |                               | 10 (100-hour)                                 |                   |  |  |  |
|          |                      |                                     |               | Z4 WFE Drift [nm]             | 4.0 (10-hour)                                 |                   |  |  |  |
|          |                      |                                     |               |                               | RSS(Z5-11) WFE Drift [nm]                     | 0.25              |  |  |  |
| Thermal  | Distortion           |                                     |               |                               | Pupil Shear Drift Mean [um]                   | 0.70              |  |  |  |
| Invar    | Growth<br>Desorption |                                     | _             |                               | Pupil Shear Drift Delta Mean[um]              | 0.40              |  |  |  |
| Moisture |                      |                                     |               |                               | Chief Ray Angle of Incidence Mean [mas]       | 7.0               |  |  |  |
|          |                      |                                     |               |                               | Chief Ray Angle of Incidence Delta Mean [mas] | 5.0               |  |  |  |
|          |                      |                                     | L             |                               | CGI-to-WFI Boresight Rate of Change [mas]     | 10.0              |  |  |  |



# **Observing Scenario**





Observing Scenario Designed for RST+Coronagraph Stability in the Reference Differential Imaging Context



### Stability Perturbations and Mitigations Structural-Thermal-Optical (STOP) and Distortion



### Perturbations

- Ground to orbit
  - Cooldown
  - Gravity release
- On-orbit variations
  - Thermal due to change in environment
  - Thermal due to internal heat load variations
  - Hygroscopic dryout
  - Invar growth
  - BOL to EOL material property changes



- Ground-to-orbit
  - Place optics at predicted 1G and warm positions to offset gravity and cold-shift effects
  - Cold figure primary mirror
  - Thermal control system
  - Kinematic interfaces (FOA struts and WFI outer enclosure)
  - Flight Alignment compensators

### Thermal/Thermoelastic Stability

- Mechanical sun shields
  - Solar Array and Sun Shield (SASS)
  - Deployed Aperture Cover (DAC)
    - Low emissivity
  - Outer Barrel Assembly (OBA)
  - Lower Instrument Sun Shade (LISS)
- Thermal control systems
  - OBA, IOA, IC, WFI, CGI, and SC Bay 4
- Active optics control
  - CGI focus mechanism and deformable mirrors
- ConOp constraints
  - Reduce slew size and observing plans
- Long-term material and/or dimensional stability
  - Flight alignment compensators





- TMS is cold-biased design supplemented with heater control to provide a stable OTA in all specified environments
  - Each heater zone has independent PI thermal control during all phases of mission
  - IOA has multiple temperature-controlled zones
- Outer Barrel Assembly (OBA) provides FOA with a stable, 230 K thermal environment
  - MLI Closeout between AMS and OBA limits FOA's radiative exposure to uncontrolled environments
- Observatory's most thermally sensitive components include the PM, SM, and SMSTs
  - STOP analysis has shown that these components require ~10 mK level stability to meet optical requirements
  - Sub-milli-Kelvin temperature stability capability was demonstrated with a flight-like integrated thermal control system (<u>Roman DITS</u>)
- AOM, POMA, and TOMA are separate optical assemblies located on the aft side of the AMS with their own operating temperatures / thermal designs.
  - TOMA includes a tip/tilt fold mirror to correct pupil shear
  - Each rely on their MLI-blanketed enclosures as radiators to provide sufficient cold-biasing for positive heater control



#### AOM Heaters @ 218K Set Point

AMS, FMS, FOA Strut, SMA & POMA Heaters @ 266.5K Set Point SMST Heaters @ 269K Set Point TOMA Heaters @ 293K Set Point





- Analysis is a key verification approach for stability requirements
- For requirements verified by analysis, all performance predictions include model uncertainty
- Model uncertainty can be incorporated by using worst case assumptions, model uncertainty factor (MUF), or Monte Carlo analysis
  - Optical analysis uses Monte Carlo approach to capture reasonable fabrication and alignment tolerances
  - Thermal analysis uses worst case assumptions
  - Distortion and dynamic analyses use MUF to capture reasonable parameter variations (CTE, moduli, etc.)
- Roman uses structural Monte Carlo analysis to determine appropriate MUFs for analysis predictions

| Distortion Analysis     | MUF (Phase C – CDR)           |  |  |  |  |
|-------------------------|-------------------------------|--|--|--|--|
| STOP                    |                               |  |  |  |  |
| Cooldown                | 2 (rigid-body)/1.3 (figure)   |  |  |  |  |
| WFI and Pupil Stability | 2 (rigid-body)/1.3 (figure)   |  |  |  |  |
| Pupil Clocking          | 2                             |  |  |  |  |
| LOS drift               | 4                             |  |  |  |  |
| Gravity Sag and Release | 0.1 (alignment)<br>2 (figure) |  |  |  |  |
| Moisture Desorption     | 2                             |  |  |  |  |
| Invar Growth            | 1.1                           |  |  |  |  |

| Jitter Analysis    | MUF (Phase C – CDR)               |  |  |  |
|--------------------|-----------------------------------|--|--|--|
|                    | 3.0 (<50 Hz)                      |  |  |  |
| Reaction Wheel and | 3-8 (40-100 Hz)                   |  |  |  |
| HGAS Jitter        | 8.0 (100-325 Hz),<br>10 (>350 Hz) |  |  |  |



# **Structural Distortion Analyses Relevant to Optical Performance**



- IM STOP analysis includes structural distortion from the following sources
- Thermal distortion
  - Dimensional changes due to changes in temperature
- Moisture desorption
  - Dimensional changes due to outgassing of moisture from composite components
- Gravity release
  - Calculates "locked" strains from the in-gravity integration process
  - Evaluates dimensional changes created by the locked strains once gravity is removed
- Invar growth
  - Dimensional changes due to the propensity of Invar to expand after manufacture





## **Structural-Thermal-Optical (STOP) Analysis Flow**







## **CGI Stability Performance Summary**



- Tight CGI stability requirements are met with MUFs and reasonable margins except for 100-hour Z4 stability
  - As presented at Mission CDR, slight exceedance of Z4 drift over 100 hours is acceptable
  - Continue to investigate methods to reduce moisture desorption analysis conservatism
- Bay 4 Bus heater control improvement greatly reduced boresight rate of change error
  - Reduction of a factor of ~4 from CDR prediction

| Req     | Description                                     | Units  | Alloc | CDR (Cy2) | Су3.1    | % Margin |
|---------|-------------------------------------------------|--------|-------|-----------|----------|----------|
| MRD-498 | CGI WFE Drift, Starlight<br>Suppression, 100 hr | nm     | 10    | 10.01     | 12.14    | -        |
|         | Thermal Variation                               | nm     |       | 2.50      | 2.50     |          |
|         | Moisture Desorption                             | nm     |       | 7.31      | 9.40     |          |
|         | Invar Growth                                    | nm     |       | 0.20      | 0.24     |          |
| MRD-502 | CGI to WFI Boresight Rate<br>of Change          | mas/hr | 10    | 20.21     | 5.18     | 48.15%   |
|         | Thermal Variation                               | mas/hr |       | 20.20     | 4.48     |          |
|         | Moisture Desorption                             | mas/hr |       | 0.01      | 0.70     |          |
|         | Invar Growth                                    | mas/hr |       | 4.00E-03  | 4.72E-03 |          |

| Requirement | Description                                               | Units | Alloc | CDR (Cy2) | Cy3.1    | % Margin      |
|-------------|-----------------------------------------------------------|-------|-------|-----------|----------|---------------|
| MRD-489     | CGI Pupil Lateral Stability - Mean                        | um    | 0.7   | 0.50      | 0.51     | 27.31%        |
|             | Thermal Variation                                         | um    |       | 0.49      | 0.49     |               |
|             | Moisture Desorption                                       | um    |       | 0.01      | 0.01     |               |
|             | Invar Growth                                              | um    |       | 1.00E-03  | 4.80E-03 |               |
| MRD-490     | CGI Pupil Lateral Stability - Delta<br>Mean               | um    | 0.4   | 0.14      | 0.08     | 79.50%        |
|             | Thermal Variation                                         | um    |       | 0.14      | 0.08     |               |
|             | Moisture Desorption                                       | um    |       | 2.70E-06  | 1.00E-05 |               |
|             | Invar Growth                                              | um    |       | 0.00E+00  | 0.00E+00 |               |
| MRD-500     | CGI Chief Ray Angle of Incidence<br>Stability: Mean       | mas   | 7     | 2.64      | 1.21     | 82.76%        |
|             | Thermal Variation                                         | mas   |       | 2.48      | 1.14     |               |
|             | Moisture Desorption                                       | mas   |       | 0.16      | 0.06     |               |
|             | Invar Growth                                              | mas   |       | 6.00E-05  | 4.10E-03 |               |
| MRD-501     | CGI Chief Ray Angle of Incidence<br>Stability: Delta-Mean | mas   | 5     | 0.72      | 0.46     | 90.82%        |
|             | Thermal Variation                                         | mas   |       | 0.72      | 0.46     |               |
|             | Moisture Desorption                                       | mas   |       | 4.30E-05  | 1.20E-04 |               |
|             | Invar Growth                                              | mas   |       | 0.00E+00  | 0.00E+00 |               |
| MRD-495     | CGI Z5-Z11 WFE                                            | pm    | 250   | 79.79     | 97.71    | 60.92%        |
|             | Thermal Variation                                         | pm    |       | 57.80     | 75.33    |               |
|             | Moisture Desorption                                       | pm    |       | 21.19     | 21.58    |               |
|             | Invar Growth                                              | pm    |       | 0.80      | 0.80     |               |
| MRD-496     | CGI Corrected WFE Drift, Z4-Z11                           | pm    | 150   | 7.80      | 23.99    | <b>84.01%</b> |
|             | Thermal Variation                                         | pm    |       | 7.80      | 21.15    |               |
|             | Moisture Desorption                                       | pm    |       | 1.60E-04  | 2.84     |               |
|             | Invar Growth                                              | pm    |       | 2.00E-05  | 3.34E-05 |               |
| MRD-498     | CGI WFE Drift, Starlight                                  | nm    | 4     | 1 22      | 1 16     | 70 99%        |
|             | Suppression, 10 hr                                        |       | -     | 1.22      | 1.10     | 70.3378       |
|             | Thermal Variation                                         | nm    |       | 0.04      | 0.19     |               |
|             | Moisture Desorption                                       | nm    |       | 1.17      | 0.95     | ļ             |
|             | Invar Growth                                              | nm    |       | 0.02      | 0.02     |               |



—

—

\_

\_

—

—

—

\_\_\_\_

### **Major Dynamics Error Sources**









- Launch Loads and Vibration Isolation System (LLVIS)
  - Between the SC and IC, *Honeywell* D-strut heritage
  - ~20 Hz first mode, attenuates RWA and HGS disturbances
- Reaction Wheel Jitter Mitigation Implementations
  - Each RWA is individually isolated, *Moog CSA* SoftRide heritage
  - RWA speeds are limited to 5 rev/sec (30 RPM) during CGI operation to avoid exciting resonant modes above this frequency
  - ACS is using an L-infinity wheel distribution algorithm that drives four wheels to the same speed
  - ACS is enforcing 1 Hz (60 RPM) separation between the four wheels

### HGAS Jitter Mitigation Implementations

- HGAS Jitter Damper (HJD) developed by *Moog CSA*
  - Damps out HGAS boom modes excited during HGAS operation
- Actuator microstepping; 16 micro-steps per every detent step
- HGAS step avoidance during inertial hold
  - ACS is designing their HGAS pointing algorithm and slew profile to minimize the need to step during imaging
- HGAS step rate keep out zone
  - Accelerate through problematic mode frequencies to avoid ringing up the modes
- Solar Array Sun Shield (SASS) Tuned Mass Dampers (TMDs)
  - Under development by Moog CSA
  - Damps out SASS modes excited during wheel and HGAS operations











### **CGI Jitter due to Reaction Wheels**







### **Model Validation Highlights**









- Roman IM and optical Monte Carlo simulation results continue to show design meets key
  mission performance requirements, including stringent CGI stability requirements
  - Combination of hardware, software, and operations achieves the CGI stability performance
- Roman IM has a few key tests that will validate models for nanometer-level stability predictions
  - Sinusoidal thermal distortion model validation of telescope components
  - Payload heater tuning and temperature stability during Spacecraft + Payload TVAC test

### • Future Work

- Additional analyses are planned to further understand system sensitivity, reduce conservatism, and address any stability concerns
- Support and crosscheck model validation test analysis
- Prepare for commissioning analysis