

Towards Starlight Suppression for the Habitable Worlds Observatory Workshop Coronagraph Technology Roadmap (CTR)

Pin Chen (NASA ExEP, JPL/Caltech), Laurent Pueyo (STScI), Nick Siegler (NASA ExEP, JPL/Caltech) August 9, 2023

© 2023. All Rights Reserved. CL#23-4368

The Coronagraph Technology Roadmap Working Group (CTR-WG)

2

Organizational Context

M. Clampin

The Coronagraph Technology Roadmap Working Group

- The CTR-WG seeks to answer the following question:
 - Where, when, and how much does NASA need to invest in coronagraph technology to mature it to TRL 5 to enable the Habitable Worlds Observatory?
- The Working Group comprises 50+ participants from
 - NASA: ARC, ExEP, GSFC, HQ, JPL, MSFC
 - Academia: Caltech, MIT, N. Arizona U., Princeton, STScI, U. Hawaii
 - Industry: Northrop Grumman, Lockheed Martin, Ball Aerospace
 - International: NAOJ, U. Bern

A Graphical Summary of Necessary Inputs to Achieve TRL 5

Programmatic Flow

Design-Point Taskforce Leads

Vis

Vanessa Bailey JPL RST-CGI Instrument Technologist Vis+IR

Olivier Guyon UA, Subaru Telescope HabEx STDT, LUVOIR STDT Vis+UV

Roser Juanola-Parramon GSFC, LUVOIR Study Office & Engineering Team

7

A Quick Tour

Preface

- Assuming HWO shall be able to
 - 1. search 100 effective habitable zones (i.e. attain 100 cumulative completeness) for planetary candidates and
 - 2. characterize candidate planets with sufficient spectral coverage to search for multiple biosignature molecules
- I'm also assuming a segmented primary mirror with 6-meter inscribed diameter
- I will name one or two key science cases (from LUVOIR Final Report) in each of the vis, UV, and IR bands
- Discuss one or two challenges in achieving the above-mentioned assumed requirements of completeness and characterization

Q

Science Case 1 for Vis: Search for Planet Candidates

- <u>Challenge</u>: Achieving *wavefront stability* to enable searching 100 effective HZs
- Background:
 - Raw contrast is important, but not on its own (Stark talk)
 - Raw contrast is important mainly as a factor amplifying the effect of residual *wavefront changes*
 - Hence, observatory stability, spatio-temporal frequencies, observing scenarios, and WFS&C (wavefront sensing & control) systems are essential contexts in evaluating coronagraph performance (Pueyo talk)
 - Flux-ratio/contrast stability requirement:
 - Better than 10⁻¹¹ between reference & target observations (assuming further postprocessing provides another factor of SNR enhancement)
 - This is a key challenge for all wavelengths and science cases considered in this presentation

Signature Science Case #1: Finding habitable planet candidates

Science Objective

Determine the occurrence rate of Earth-like conditions on rocky worlds around Sun-like stars.

Description

Find and study $\gtrsim 28$ habitable planet candidates to discover at least 1 Earth-like planet orbiting an FGK star (at 95% confidence), for occurrence rates of habitable conditions $\gtrsim 10\%$.

Key Functional Requirements

Inscribed telescope diameter	\gtrsim 6.7 m
Total time	2 years
Inner working angle	\lesssim 4 λ /D
Raw contrast	1 × 10 ⁻¹⁰
Wavelength range	$\stackrel{<}{_\sim} 500~\text{nm}$ to $\stackrel{>}{_\sim} 950~\text{nm}$
Spectral resolution & SNR (near 940 nm for H ₂ O detection)	$R\gtrsim70,SNR\gtrsim5$

LUVOIR Final Report

Vis Science Case 1: Search for Planet Candidates

 ΔI : post-subtraction background intensity

Vis Science Case 1: Search for Planet Candidates

- By definition, static raw contrast (|*E*|²) is constant → removed by reference subtraction (w/ residual shot noise)
- The mixing term (2Re{E* ΔE}) is usually the dominant term impacting exoplanet detectability (noise floor)
- The table shows that raw contrast can be 10x worse, but a 3x improvement in wavefront stability returns the same detection limit
- Contributors to instability include movements of primary-mirror segments, telescope alignment drifts, and changes in DM surface figure
- Observatory stability and coronagraph instrument performance are inextricably coupled (via the cross term)!

Residual WFE & instability	∣ <i>E</i> ∣² raw contrast	∆ <i>E</i> ²	2Re{E* ∆ E}	Δ/
$E = 7 \times 10^{-6},$ $\Delta E = 7 \times 10^{-7}$	5x10 ⁻¹¹	5x10 ⁻¹³	1x10 ⁻¹¹	1x10 ⁻¹¹
$E = 2.3 \times 10^{-5},$ $\Delta E = 2.3 \times 10^{-7}$	5x10 ⁻¹⁰	5x10 ⁻¹⁴	1x10 ⁻¹¹	1x10 ⁻¹¹

NASA Astrophysics Program Offices Facilitating HWO Roadmapping

HWO Technology Roadmapping

Ultrastable Observatory Lead: Lee Feinberg (GSFC) Tech Coordinator: Laura Coyle (Ball)

Subteams: Observatory/System/ACS Sensing and Control Mirrors/Thermal/Coatings Backplane/Structure/Deployment Verification/Facilities/Demos

Facilitated by the Physics of the Cosmos (PhysCOS) & Cosmic Origins (COR) Astrophysics Program Office

Coronagraphs Co-Lead: Pin Chen (ExEP/JPL) Co-Lead: Laurent Pueyo/(STScl)

Subteams: Deformable Mirrors Coronagraph Design Options Segmented Telescope Sims Workshop Planning)

Facilitated by the Exoplanet and Exploration (ExEP) Astrophysics Program Office

Vis Science Case 1: Search for Planet Candidates

Key Capability

- Ultra-stable observatory: The COR Ultra-Stable Observatory Roadmap Team is studying this critical topic [see Ultra-Stable Observatory session, Thursday morning]
- <u>Other Important Capabilities</u> [see Guyon + other Coronagraphy <u>talks</u>]
 - Wavefront sensing and control (WFS&C) in the coronagraph instrument to mitigate wavefront instabilities from the observatory [e.g. Potier et al. 2022 JATIS, Pueyo et al. 2022 JATIS]
 - Coronagraph dark field control [e.g. Currie et al. 2020 PASP]
 - Realtime DM surface monitoring [e.g. Ruane et al. 2020 JATIS]

Science Case 2 for Vis: H₂O & Modern-Earth O₂ Measurements

C. Stark

Signature Science Case #2: Searching for biosignatures and confirming habitability

Science Objective

Search for signs of global biospheres on rocky worlds around Sun-like stars by assessing the chemical state of planet atmospheres. Confirm liquid water.

Description

Measure abundances of key molecules (e.g., H_2O , O_2 , O_3 , CH_4 , CO_2 , CO) in the atmospheres of rocky exoplanets via direct spectroscopy. Perform other characterization observations to place the planets in context.

Key Functional Requirements

Inscribed telescope diameter	\gtrsim 6.7 m
Total time	
LUVOIR-A	6.5 months
LUVOIR-B	6.2 months
Inner working angle	\lesssim 4 λ /D
Raw contrast	$\lesssim 1 \times 10^{-10}$
Planet spectroscopy wavelength range	200 nm to $\gtrsim\!\!1800$ nm
Spectral resolution & SNR	
0 ₂ (760 nm)	R≈ 140, SNR≳8.5
H ₂ 0 (1120 nm)	R ≈ 70, SNR≳8.5
CO ₂ (1600 nm)	R≈ 200, SNR≳8.5
Astrometric precision for planet masses	<1 µas
Stellar spectroscopy wavelength range	100 nm to 1000 nm

Science Case 2 for Vis: H₂O & Modern-Earth O₂ Measurements

- <u>Challenge</u>: Attaining low enough detector noise to achieve required SNR for retrieving gas abundances from observed spectra
- <u>Background</u>:
 - IFS observations requires sampling the planetary signal with ≥ 32 pixels/PSF: e.g. 896 pixels for R = 140, 20% BW → Detector noise adds up
 - B. Nemati's error-budget analysis for exo-Earth characterization w/ 6meter telescope:
 - Cannot close budget for SNR>5
 - Detector dark noise is the dominant term
 - Updated CGI detector test data should improve the SNR estimate, stay tuned

Potential Mitigation Approaches

• Further develop lower-noise detector technologies (Crill talk)

Possible Trades

- IFS vs. other spectrographs
- Spectral resolution/BW vs. science return (Domagal-Goldman & Stark talks)

UV Science Case: O₃ Detection to Identify *Presence* of O₂

LUVOIR Final Report

- UV can tell you whether or not there is O₂, but cannot tell you how much [M. Damiano]
- How deep into the UV do we need to go? Will photometry suffice or do we need a spectrograph?
- Preliminary, independent studies by Mario Damiano and Amber Young suggest going out to 250 nm with a few photometry channels might suffice, pending further investigations

UV Science Case

 <u>Challenge</u>: Achieving adequate wavefront control and stability to characterize an adequate # of planets

Background:

- As state before, contrast/wavefront stability is important in all cases. Restated here to emphasize that it is a harder problem at shorter wavelengths.
- Going to shorter wavelengths means the same wavefront error in physical dimension becomes a larger fraction of wavelength, leading to a proportionally larger phase error ($\Delta \phi \sim 1/\lambda$).
- Also note that speckle intensity scales as $(1/\lambda)^2$.
- Capabilities/trade from Vis Science Case 1 apply here as well

UV Science Case: Additional Notes

<u>Comment on the Impact of Low UV Throughput</u>

- A modest rough estimate based on state-of-the-art puts system throughput (from telescope primary mirror to detector output) in the UV at ~ 3%
- Nature presents us fewer bright targets in the UV compared to vis
- How many viable UV targets are there?
- Preliminary UV target list [E. Mamjek, K. Stapelfeldt, D. Savransky] indicate only a modest loss (26%) of viable targets compared to vis, mostly K stars

of accessible targets (at GALEX NUV band for O3 detection)

NUV throughput	3%	9%	18%
mag limit (NUV,AB)	35.64	36.84	37.64
N(total stars)	121	150	158*
N(F-type)	66 (max)	66 (max)	66 (max)
N(G-type)	45	55 (max)	55 (max)
N(K-type)	10	29	37
N(M-type)	0	0	0

* at 18% throughput, only missing 6 target stars (all K5V-M2V)

Updated *preliminary* estimates from K. Stapelfeldt & E. Mamajek (6/7/23) -Thanks to D. Savransky for discussions and analysis related to stellar NUV photometry

19

UV Science Case: Additional Notes

<u>Comment on Polarization Aberration</u>

- Contrast degradation due to polarization aberrations is especially pronounced at short wavelengths. However, the effect projects mainly into low-order aberrations (astigmatism). Thus, degradation occurs mostly at small working angles.
- Mitigation
 - Most UV targets are at large working angles in terms of λ/D. Coronagraphs can be designed to mitigate effects of polarization aberration
 - 100 mas → 12 λ/D @ λ = 250 nm, D = 6 m

Science Case for IR: CO₂ Detection

Signature Science Case #2: Searching for biosignatures and confirming habitability

Science Objective

Search for signs of global biospheres on rocky worlds around Sun-like stars by assessing the chemical state of planet atmospheres. Confirm liquid water.

Description

Measure abundances of key molecules (e.g., H_2O , O_2 , O_3 , CH_4 , CO_2 , CO) in the atmospheres of rocky exoplanets via direct spectroscopy. Perform other characterization observations to place the planets in context.

Key Functional Requirements

Inscribed telescope diameter	\gtrsim 6.7 m
Total time	
LUVOIR-A	6.5 months
LUVOIR-B	6.2 months
Inner working angle	$\lesssim 4\lambda/D$
Raw contrast	$\lesssim 1 \times 10^{-10}$
Planet spectroscopy wavelength range	200 nm to $\gtrsim\!\!1800$ nm
Spectral resolution & SNR	
0 ₂ (760 nm)	R≈ 140, SNR≳8.5
H,0 (1120 nm)	R ≈ 70, SNR≳8.5
CO, (1600 nm)	R≈ 200, SNR≳8.5
Astrometric precision for planet masses	<1 µas
Stellar spectroscopy wavelength range	100 nm to 1000 nm

LUVOIR Final Report

Science Case for IR: CO₂ Detection

- <u>Challenge</u>: Achieving sufficiently small inner working angle to characterize a sufficient number of planets
 - <u>Background</u>
 - 65 mas → 1.2 λ/D @ λ = 1.6 μm, D = 6 m
 - State of the art: ~ 3 λ/D

Potential Mitigation Approaches

- Optimize coronagraph design for small IWA
- Sub-aperture nulling technologies
- Photonic nulling technologies
- Larger telescope

<u>Challenge</u>:

- Attaining sufficiently low detector read noise to achieve required SNR for retrieving gas abundances from observed spectra
- For IR detectors at T below ~ 120 K read noise typically exceeds dark noise by orders of magnitude

Mitigation Approach

• Further develop low-noise IR detector technologies (Crill's talk)

Parting Comments

- Spectral coverage is a key trade to be conducted
- The observatory and coronagraph instrument performance are inextricably coupled and must be designed together
- Wavefront stability is critical and will require multiple feedbackcontrol systems
 - If using natural guide stars, photon rate imposes hard limits on attainable control bandwidth/gain [Potier et al. 2022]
 - Faster and higher spatial-frequency disturbances both diminish photon counts
- Critical coronagraph capability advancements include WFS&C, photon-counting detectors, throughput, and IWA (esp. in IR)
- High-fidelity integrated models, postprocessing, and manufacturability of optical components are critical as well
- Test facility: Will need to demonstrate broadband coronagraph system performance in vacuum, with a dynamic OTA simulator (Mennesson & Por talk)

Thank you!

24