Coronagraph Testbed Challenges

Garreth Ruane

Jet Propulsion Laboratory, California Institute of Technology

© 2023 California Institute of Technology. Government sponsorship acknowledged. CL#23-4134

1a. DST commissioning

NASA's High Contrast Imaging Testbed (HCIT) facility

- The "twin" DSTs are ultra-stable testbeds for coronagraph instruments capable of achieving performance commensurate with direct imaging of Earth-sized exoplanets in the HZ of Solar-type stars.
- DST-1 achieved our record contrast: ~4e-10 in a 10% spectral bandwidth.
- DST-2 recently commissioned. Results to be presented at SPIE.

Patterson et al., Proc. SPIE 111171U (2019) Seo et al., Proc. SPIE 111171V (2019) Meeker et al., Proc. SPIE 118230Y (2021) Noyes et al., Proc SPIE, in prep. (2023)

The Decadal Survey Testbed design

Patterson et al., Proc. SPIE 111171U (2019)

A simplified layout ...

HCIT primarily uses two DM technologies

Deformable mirror set #1

- Northrup Grumman AOA Xinetics (AOX) electrostrictive
- Lead magnesium niobate (PMN) electroceramic actuators
- 48 actuators across
- •1 mm pitch

Deformable mirror set #2

- Boston Micromachines Co (BMC) MEMS
- Metallic coating on
- -OR- Silicon membrane
 - Electrostatic actuators
 - 50 actuators across
 - •0.4 mm pitch

Focal plane mask is Nickel-on-glass occulter

Seo et al., Proc. SPIE 111171V (2019)

DM-apodized Lyot coronagraph simulation

Trauger et al., Proc. SPIE 84424Q (2012); Riggs et al., Proc. SPIE 106982V (2018)

Monochromatic dark holes reach **2×10⁻¹⁰** mean contrast

Mean contrast over 3-8 λ/D is 2×10⁻¹⁰ with 543 nm HeNe laser source.

Seo et al., Proc. SPIE 111171V (2019)

10

10% bandwidth dark holes reach 4×10⁻¹⁰ mean contrast

- Spectral bandwidth = $\Delta\lambda/\lambda$ = 10%.
- Central wavelength = **550 nm**.
- Five 2% sub-bands centered at 528, 539, 550, 561, 572 nm.
- Repeatable result.

Contrast breakdown summary

Best Contrast		Measured	Morphology
Modulated: 1.81e-10 $ \int_{0}^{0} \int_$	DM quantization error	8.78e-11	Speckle-y
	Chromatic control Residual	9.32e-11	Speckle-y
Unmodulated: 2.01e-10	Occulter ghost	1.01e-10	Pattern moves with wavelength
	Testbed Jitter	4.19e-11	Centered
	Unknown	5.04e-11	Diffuse

12

Seo et al., Proc. SPIE 111171V (2019)

Contrast breakdown summary

Seo et al., Proc. SPIE 111171V (2019)

1b. Vector Vortex SAT (PI: Eugene Serabyn, JPL)

Similar set-up, but coronagraph masks

The contrast is limited by light that modulates with the DM probes.

Mean raw NI = 1.6e-9 10% bandwidth $\lambda_0 = 635$ nm 3-10 λ_0 /D dark hole

16

Contrast budget can explain current floor at 10% BW

Component	Error	Mitigation strategy	Contrast estimate
Deformable mirror	Quantization error	Next-gen DM electronics	~1e-10 for AOX + gen5 electronics
	Drift	Temperature control	Negligible.
Testbed	Tip/tilt jitter	Vibration isolation	Negligible.
	Circular analyzer	Procure the highest possible quality QWPs and LPs	~4e-10 with polarization filtering and monochromatic laser (637nm).
Vortex mask	Bulk retardance error (ε) (a.k.a on-axis leakage)	Minimized during FPM manufacture	
	Fine scale retardance error (amp. & phase)		~2e-10 (highly chromatic)
	Fast axis orientation error (phase)		~1e-10. To be confirmed. (highly chromatic)
	Local transmission errors		~2e-10. To be confirmed. (highly chromatic)
		Total:	~1e-9

Contrast budget can explain current floor at 10% BW

Component Г	Error	ОМ	lelectronics		Contrast estimate
Deformable mirror	Quantization error			5	~1e-10 for AOX + gen5 electronics
L L	Drift		Temperature control		Negligible.
Testbed	Tip/tilt jitter				Negligible.
	Circular analyzer	Coronagraph mask design and fab		~4e-10 with polarization filtering and monochromatic laser (637nm).	
Vortex mask	Bulk retardance error (on-axis leakage)	(ε) (a.k.a	Minimized during FPM manufacture		
	Fine scale retardance error (amp. & phase)				~2e-10 (highly chromatic)
	Fast axis orientation error (phase)				~1e-10. To be confirmed. (highly chromatic)
	Local transmission erro	rors		~2e-10. To be confirmed. (highly chromatic)	
				fotal:	~1e-9

2. More recent successes in HCIT

Lyot coronagraph broadband "spectroscopy" mode (SAT PI Dimitri Mawet, Caltech)

4×10⁻¹⁰ Contrast in <u>20% BW</u>

Lyot Coronagraph 2 AOX DMs

Mean Raw NI	4×10 ⁻¹⁰	
λ ₀	560 nm	
Bandwidth	20%	
Scoring Zone	5-13.5λ ₀ /D	
DMs 2× AOX 2k		
Single Polarization		

Broader bandwidth achieved through optimization of <u>wavefront control</u>

Allan et al., Proc. SPIE, in prep.

Picometer wavefront sensing and metrology

Ruane et al., JATIS 6(4), 045005 (2020)

Sub-picometer actuation demonstration on DST-2

- Measured motions of 92 actuators on BMC 2K DM ۲
- Poke command corresponds to ~1pm ۲
- 10,000 frames, ~14 hrs total integration time

Poke amplitude for ~1pm	190 µV
Estimated resolution	650 fm (120 μV)

Bendek, Allan, Ruane, et al., in prep.

3. An incomplete list of needs moving forward

Needs: Technology investments

- Key coronagraph components
- Deformable mirrors
- Coronagraph masks
- Detectors, spectrographs, wavefront sensors, software, algorithms, flight computers, fast steering mirror, reduced surface error OAPs,

Aspects:

- Design
- Manufacturing
- Metrology and characterization
- Processing and handling
- Interfaces

The DST DMs

Needs: Testbed demonstration programs

- Testbed demonstration milestones that meet TRL 5 and 6 requirements
- Coordinate testbed activities across institutions.
- Dedicated testbed efforts for model validation and uncertainty quantification
- Realistic wavefronts (aberrations, segments, jitter, shearing, etc)
- Sensitivity measurements

Example static segmented wavefront mirror

e: PlateausFlatSubtracted sc: Single Map Profile (170.92 μm) (Avg 203 lines) 500 µm -0.8 nm

Courtesy of Dan Shanks (JPL Microdevices Lab)

Needs: Testbed demonstration programs

- Testbed demonstration milestones that meet TRL 5 and 6 requirements
- Coordinate testbed activities across institutions.
- Dedicated testbed efforts for model validation and uncertainty quantification
- Realistic wavefronts (aberrations, segments, jitter, shearing, etc)
- Sensitivity measurements

courtesy of Emiel Por

Needs: Programmatic

Directed funding to support:

- Modeling and error/contrast budgets
- Stable, experienced testbed operator workforce
- Process control
- Detailed mask characterization
- Testbed-result-driven coronagraph design and modeling

Summary

But we have work to do!

For very high contrast, stability is paramount!

- Tight stability requirements
- Minimal vibration
- <1 mK temperature control
- <1 mTorr vacuum

Custom titanium OAP mounts

Carbon composite table

Contrast breakdown

Unmodulated

(a) 10 % Full DH

(b) 6 % Full DH

Modulated

Courtesy of Joon Seo (JPL)

- Smallest modulated light at full DH is 8.78e-11, shown in (c). Consistent with DM LSB effect of 1e-10.
- The 10% chromatic control residual is 9.32e-11, which is 1.81e-10 (best modulated) 8.78e-11 (LSB effect)
- Smallest unmodulated with full DH is 9.23e-11, shown in (c). Excluding the testbed jitter impact (4.19e-11), unknown unmodulated light is 5.05e-11.
- Increase of umodulated light from HeNe to Broadband laser is 1.09e10, which is 2.01e-10 (best unmodulated page 5) – 9.23e-11 (HeNe). Consistent with occulter ghost.

Wide-band contrast on the Decadal Survey Testbed

4x10⁻¹⁰ Contrast in 20% BW

Lyot Coronagraph

Wide-band contrast on the Decadal Survey Testbed

4x10⁻¹⁰ Contrast in 20% BW Lyot Coronagraph, 2 DMs

Experiment Parameters		
λ ₀	560 nm	
Bandwidth	20%	
Scoring Zone	5-13.5λ ₀ /D	
DMs 2x AOX 2k		
Single Polarization		

Trial	Spectral Mean NI	Uncertainty*
А	3.03E-10	+/- 9E-12
В	3.97E-10	+/- 4E-12
С	5.10E-10	+/- 6E-12

*Std. Dev. across 8 measurements (ignoring detector persistence)

Prev. Record: 4x10⁻¹⁰ Contrast in 10% BW

Wide-band contrast on the Decadal Survey Testbed (cont.)

DST's WFS has proven to be a crucial diagnostic tool...

0.2 Hz loop, $t_{int} = 1$ sec, duration = 3000 sec = 50 min Playback rate = 10 fps = 50x real time

DM surface height resolution measurement

Single-bit actuator pokes

- The least significant bit corresponds to a motion of 11 pm at the peak of isolated actuators.
- Noise in surface height difference measurement is <1 pm.
- Integration time is 10,000 sec (2.8 hr) per DM state.
 - Discrete integration time is 10 ms per frame.
 - We switched between the two DM states 1,000 times taking 10,000 frames at a time.
 - This experiment combines *1 million* WFS frames per DM state.

Ruane et al., JATIS 6(4), 045002 (2020) Ruane et al., JATIS 6(4), 045005 (2020)

Measurement agrees with theory within uncertainties

- Experimental noise measurement is within a factor of a few of ideal performance.
- Nominal WFE can account for difference in sensitivity.
- Uncertainty in WFE at the Zernike WFS mask is likely >50 nm.
- Demonstrates the possibility to measure picometer motions

Static segmented wavefront mirror

Surface map via white-light interferometry

Hex width = 0.436mm Manufactured by Dan Shanks (JPL Microdevices Lab)