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* JWST context for Habitable Worlds
e Stability motivation

* Architecture implementation

* JWST instabilities

* Lessons learned
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* JWST is a large, segmented telescope of comparable size to what is
needed Habitable Worlds (JW 5.5m vs HWO > 6m inscribed
diameter).

* JWST has passive stability that demonstrates what is achievable now
(i.e., TRL 9).

* JWST does not have the active wavefront controls planned for
Habitable Worlds (e.g., edge sensors, laser truss, low order
wavefront sensor).

e JWST telescope and instruments operate at cryogenic temperatures
(~45 K), whereas Habitable Worlds is likely to be operated near
room temperature (~300 K, actual T TBD).
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JWST Stability Motivation






& #==2 Stability Motivation

* JWST science requirements built around 4 pillars: first light, assembly of

galaxies, birth of stars and protostars, and planetary systems and the origins of
life.

* Each of the scientific pillars required driving performance in sensitivity and
spatial resolution.

* JWST used Strehl ratio as the single scalar merit function for image quality to drive the
allocation process.

* Trade between wavefront error (WFE) and line of sight (LOS) jitter



<%= Transformative Sensitivity

Imaging sensitivity, pt src, SNR=10 in 10%s Spectroscopic line sensitivity, pt src, SNR=10 in 10%s
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" wees Image Quality and Stability Requirements

e The image quality is specified by the Strehl Ratio, including dynamic terms:
o Strehl Ratio of 0.8 at 2 um wavelength (NIRCam) -- Equivalent to 150 nm rms WFE
m MR-110: “Over 80% of the FOV of each NIRCam module, the observatory shall be diffraction
limited at 2 um defined as having a Strehl ratio greater than or equal to 0.8.
o Strehl Ratio of 0.8 at 5.6 um wavelength (MIRI) -- Equivalent to 420 nm rms WFE
m MR-116: “The Observatory, over the FOV of the Mid-Infrared Instrument (MIRI) shall be
diffraction limited at 5.6 um, defined as having a Strehl Ratio greater than or equal to 0.8.”
o MR-228: “The OTE WFE shall be less than or equal to 131 nm RMS over the field of views of
NIRCam, NIRSpec, and MIRI.” MR-414: “... 150nm RMS over the field of the FGS.”
e Image quality stability is specified by Encircled Energy (EE) stability

o MR-113: Specified to change less than 2.3% at 2 um wavelength over 24 hours.
o MR-115: Specified to change less than 3.0% at 2 um wavelength over 14 days following a worst
case slew.
m Approximately 68 nm rms (depends on form of aberration content)
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Architecture Implementation



* Thermal-structural stability — Observatory thermal variations,
structural thermal expansion

* Dynamic stability — vibrations and dynamical excitations, mitigations
through isolation

e Space environmental effects (e.g., micrometeoroid impacts, space
weathering)
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<" Telescope Architecture
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JWST Performance
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Achieved vs. Optical Budget Performance for JWST + NIRCam and MIRI

200
Requirements
- NIRCam Y
2 ca X  Optical Budget Predicted
150 A v I Achieved Performance, initial after OTE alignment
125 4 x v " Achieved Performance, post C3 strike and compensation

RMS WFE [nm]

RMS WFE [nm]
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3. #==2 Telescope Static Error

* Telescope alignment, the correctable static wavefront error, is nearly perfect.
There were no modifications to the alignment that would have gained
material improvements (< 1% EE change at any field point).

* NB: micrometeoroid impacts are slowly degrading the static wavefront error (see
Menzel’s presentation).

e OTE wavefront error is currently 62nm; NIRCam WFE is 32nm at control field point

* We carry out wavefront measurements every 2 days and correct the telescope
alignment less frequently as needed to maintain the static alignment
(corrections planned for a 14 day cadence and currently needed significantly
LESS frequently).

* We do not plan to correct the dynamic drifts but rather the systematic drifts due to the
telescope’s deformations.



" wese CNCircled Energy Stability Meets Requirements

((

Se=e
‘Encircled Energy 24 Hour (%) 14 Day (%)
Stability
Requirement <2.3% <3.0%
BOL Thermal Test 0.2 0.53
EOL Estimate 0.4 2.4

Evaluation assumptions
* BOL to EOL extrapolations are valid.
* Thermal slew data matches the BOL prediction.
* Tilt events are small contributors relative to thermal and dynamics.

* Line of sight is bounded by high speed jitter (observed every 2 days with wavefront
monitoring) and image motion measurements from the thermal stability test.

* Form of the static wavefront error is consistent with the encircled energy stability models.
Knight & Lightsey, 2022, SPIE 9



Wavefront Error RMS [nm]
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JWST Instabilities
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<" |nstabilities -- Knowns and Unknowns

. Design drifts: When a large slew in pitch (i.e., toward or away from the sun) is made, thermal changes on the
spacecraft and OTE contribute to optical stability changes.

. Pointing instability: from thermal changes to the star tracker assembly and OTE which affect the relative
coordinates, resulting in a roll about the boresight (i.e., not sensed or corrected by the fine guidance sensor
loop). HWO could control roll with more than one guide star.

. OTE thermal distortion: from structural displacements to the OTE backplane and secondary mirror motion,

resulting in a change in the wavefront error. HWO will be active; the JWST is a benchmark for dynamic range and
time constants for active control.

. As-built drifts: During OTIS cryovacuum testing, three additional instabilities were observed:

. PMSA tilt events: unpredictable tilt events, likely due to backplane stress relief from the structural
cooldown to operational temperatures. Several events were identified during OTIS cryo-stable but had
plausible non-flight contributors. HWO will be sensitive at picometer level for HWO (need active controls,

PSF calibrations); HWO room temperature so less built in strain.
. |EC cyclic wavefront drifts: from the IEC radiator panel heater turn on/off which coupled into the backplane

through the harness. HWO will use variable heater control (not bang-bang), harnesses will be designed
to mitigate mechanical interactions (e.q., splayed cables, service loops), and thermal control loop should be modeled.

. Frill & PMSA close-out thermal distortion: from frill and PMSA installations that did not have the requisite
slack to operate across the OTE temperature range without imparting forces on the backplane. HWO design
should avoid using a frill (e.g., a telescope barrel decoupled from mirrors/backplane).

Micrometeoroid damage will degrade the OTE static wavefront error over time. HWO can use a barrel to protect .
from micrometeoroids and contamination.
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See Marie Levine keynote talk “Integrated modeling of the James Webb Space Telescope: flight
performance and lessons learned” at SPIE Optics + Photonics August 20-24, 2023.
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Thermal Distortion:
Telescope, Frill, and PMSA Closeout



& =28 Thermal Distortion Overview

Pointing within the field of regard
changes solar heating, causing
temperature changes (< 100 mK, <

50nm drift EOL), causing wavefront
drift.

JWST is passively stable with thermal =
isolation from the spacecraft busand — = _

low CTE components on the

telescope.
JWST designed to meet the 14 day
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without any mirror control —thatis, § -

the wavefront active control does not
correct thermal distortion but rather
systematic drifts (e.g., tilt events,
mechanical creep).
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“=22 Thermal Distortion Ground TestS  omsinisc chamber A

Thermal distortion predictions from integrated

modeling, anchored in tests at the component and

assembly levels.

OTIS cryovacuum testing measured alignment drifts and
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e Confirmed structural displacements due to

temperature changes, making use of high precision
ground test temperature sensors

e Repeated tests on cooldown and warm up;

X O

=
8
8
1°2
@

independent team analyses g 301

1
©
X &1

X -

Verified flight telescope performance within integrated — :* .
modeling predictions

RMS Wavefront E
Q1
&

e

N
=
S
1

* HXQ 1

;

@
*K0

Discovered unexpected wavefront drifts, later attributed

200 |

Y

0¥

to interactions with soft structure and harnesses. T

-200 ¢ . L . L . . . J
0 5 10 15 20 25 30 35 40

Hours elapsed 2 7



J

<%= Frill and PMSA Closeouts

Soft structure “frill” extends from the perimeter
of the primary mirror to block unwanted stray
light

Primary mirror closeouts

28



G Evidence of a Taut Frill during Cryo Testing

Ambient 125 K

tension folds apparent tension folds increased

* Design intent was for frill and close-out to remain slack throughout operating temperature
range.
* Evidence of tension fields in frill seen in photogrammetry system imagery

29



Following the test, direct inspections confirmed the design intent was not achieved
Frill blanket inspections estimated the slack by measuring the available deflection when a

gentle force was applied normal.
Major effort was made to increase the slack but we didn’t do this in a few places near

deployments and accepted there would be a few nm effect after a slew.

* We were not able to re-test and verify the repaired performance.
30



Wavefront Drift (nm rms)
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Feinberg, McElwain, Bowers, et al. 2023, JATIS (submitted)
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|[EC Cyclic Wavefront Drifts



* |[EC electronics operate at
Region 1: Instruments are

~280 K
mounted to ISIM structure and

e |EC electronics boxes use el by cbosvakory

enclosure and radiators.

bang-bang heaters for
thermal control e ompanmert oy o }
. mounting surfaces and ambient |
® I EC e | ectronics b oxesSs are thermally controlled environment & s
for instrument electronics in closa\ B

connected via harnesses to  rroximitytoinstruments
the science instruments.

Region 3: Spacecraft houses ISIM
Command and Data Handling
(ICDH) and cryo-cooler
compressor and cryo-cooler
electronics
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* Large cyclic wavefront errors observed in test and correlated to IEC temperature control cycle
* During JSC there was a mechanical short between the IEC and Backplane from the GSE

* At the end of the test, the short was offloaded (using a large flexure) and showed the cyclic

behavior greatly reduced
* Dead band was reduced from £ 1.0 K to + 0.25 K, wavefront oscillations mitigated

* Analysis indicated not worth implementing pseudo PID control (complicated, late)
* Residual effect expected in flight; integrated modeling predicted 3.5 nm oscillations
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IEC heater dead band
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: IEC heater dead band
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CAR-819 / APT 1446-4 IEC Stability, -8 WL time series

e Cyclic drifts expected from IEC panel ?‘5’ — Single Component
heater on-off cycle. 210

e Wavefront is primarily focus and E 8(5)
astigmatism (single component model 2_0:5_
mixes focus and astigmatism). g}g

e Delta WFE monitor achieved ~200pm ; 250 500 750 1000 7350 7500 1750
resolution performance (analysis by time (5)
Alden Jurling, GSFC). 2/\ e ;gtkamgnal

e Transit spectroscopy measurements ‘*?,\ | |
report correlated noise at timescales < % i f\\,\ A ! M\(‘ /\1 g} |
5 minutes, attributed to uncorrected § . \ /J } {\& f“«w\ | \.\ vl 1‘\ j f
noise from the IEC heater thermal 2 \ | L\ / { N U LV ‘ 1 j \ Y
cycling (Lustig-Yaeger et al., 2023). 7 '«Vf W \( \‘ll‘ \j \A)
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Contributor

IEC Heater Cycling

Frill & PMSA
Closeout

Thermal Distortion

Predicted
Amplitude
(WFE nm rms)

3.5

14.4

Measured
Amplitude
(WFE nm rms)

2.5

4.45+0.19

17.94+0.39

Predicted Response

240-480s period
oscillation

8-10 hr time
constant

5-6 day time
constant

Measured Response

224 s period
oscillation

0.77 hr time
constant

1.41 day time
constant

*The predicted values reported are for the beginning of life properties and including model uncertainty factors.

8/10/23

36
Feinberg, McElwain, Bowers, et al. 2023, JATIS (submitted)



EEEEEEEEEEEEEE

Primary Mirror Segment
Assembly Tilt Events (now
infrequent)



<.*%*# Cooldown Created Mechanical Stress
* Passive cooling to its operational

temperature by the 5 layer sunshield.

* Cooldown from room temperature to
cryogenic temperatures created
stress within the telescope materials
and interfaces.

* Structural stress relief manifests itself
as stick-slip releases, tilting the
optical elements (called “tilt
events”).

* Tilt events were frequent early in the
mission but have decreased in
frequency as the structure
equilibrates.

38



* Frequency has reduced considerably as the OTE structure has equilibrated.
* Easily measured with wavefront sensing and corrected as needed.

Previous Obs. PID 02726, Sensing Obs. PID 02726,
Obs 377 Obs 403
R2022102704 R2022102903 Drift between
(2022-10-27 18:47:45.269000) (2022-10-29 21:17:41.119000) Current and Previous 5
B ‘ BN / l
WA o B6 ey, 2N B2 0.1
b fr - £ r T 7))
. o - g i vy
- R ’ - . L™ g
- . e 0.0 =
‘ 4 . * T —
pre V : — Sl o ..’ g E
SR X\ B5. #, ' 49N B3 0.1
AN V4 \ N/
WFE RMS: ™ WFE RMS: ™ WFE RMS:

60.5nm - 62.3nm -y 15.2nm 6.10 nm/hr & _0 2

JWST_014
39



EEEEEEEEEEEEEE

Image Motion
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<252 Jitter Veritication by Analysis with Integrated Modeling
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<" Jitter Measurements

Typical Jitter Measurement
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PSD Showing Excited Modes

Fuel Slosh and Isolator Assembly Modes

r s

F 3

— Modes Excited by Reaction Wheels

e Typical jitter rms is ~1 mas radial (cf. ~¥7 mas rms over 15 s requirement)
* NIRCam 8x8 pix readout with 2.2 ms frame rate (=460 Hz = 230 Hz Nyquist frequency) for ~2 min

* Expected contributions from reaction wheels and cryocooler exported vibrations less than predicted (conservative

modeling)

150
Frequency [Hz]

* Cryocooler tuning and Reaction Wheel push through algorithm (PTA) not needed!

e Jitter measurements every 2 days as part of the routine wavefront sensing measurements.

Hartig & Lallo 2022, JWST-STScl-008271 Memo
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Pointing instability following slews (7~1 hr) can arise due to
the different locations of the startracker (ST) in Thermal
Region 3 on the spacecraft (hot) side of the Observatory
and the fine guidance sensor (FGS) in Thermal Region 1 on
the telescope (cold) side.

Relative ST and FGS thermal drifts will cause inter-
boresight motion that produces a guide star offset in FGS in
the V2/V3 plane, which will be corrected through the ACS
loop with offset loops and FGS to J-frame updates, and
rotational drift about the V1 axis. The rotational drift is not
sensed by the ACS system and not corrected.
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Feinberg, McElwain, Bowers et al. 2023, JATIS Submitted
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Science Instrument Focal Plane Arrangement
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On-orbit Pointing Stability Measurement using NIRCam

010\ |

NIRCam shortwave
platescale is 31.1 mas/pix ~ 0.05

pix)
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Predict 0.79 mas/hr Hartig & Lallo 2022, JWST-5TScl-008271 Memo
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Environmental Factors:
Micrometeoroids
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Lessons Learned
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s Some Stability Lessons Learned

* Piecewise verification by analysis works
* JWST wavefront sensing demonstrated in the sub-nm regime
 Soft structure is prone to workmanship issues and is difficult to verify

* Tilt event instabilities may be present for similar composite structures with
wing latch interfaces

* Model uncertainties are required for requirements verification but can lead to
conservatism. How you evaluate the model uncertainties should be revisited
on a case by case basis. Day in the life at beginning of life performance should
be emphasized too.

* Harness properties should be carefully included in thermal distortion models
* Avoid bang-bang heater control; include thermal control in integrated models
* Independent modeling and analysis is valuable throughout the development
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