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Approaches to Relax Telescope Requirements
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What is the Contrast Requirement ? Contrast scale
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Coronagraph Raw Contrast
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Self-Calibrating Coronagraph System
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Fundamental Advantages of a Self-Calibrating Coronagraph System
... why can’'t a WFC loop achieve the same raw contrast as the post-processed PSF ?
(separately from coronagraphy being extremely difficult at high contrast)

Correction null space > measurement null space
e Some errors can be seen by WFS but not corrected
e Itis much easier to add/upgrade WFS to capture wide range of errors than to add/upgrade DMs to correct
them

Sensitivity
e Speckle control WFC loop can only use light inside dark hole
e PSF calibration can use any starlight (out of band, outside dark hole)

Coherent mixing
e Speckle control WFS loop can be background-limited on zodi+exozodi, or needs to use large probes (not
useful as science data)
e PSF calibration does not need probing, can use bright starlight with coherent mixing with WF errors (LDFC)

Time
e Speckle control WFC loop can only use past measurements (poor time response)
e PSF calibration can combine past, current and future measurements
e WEFS can capture high speed errors (PSD) that cannot be corrected



Optimizing Wavelength for Sensitivity

Short wavelength : better optical gain from intensity to OPD
Red target: higher photon count at longer wavelength

Table 6 Optimal Wavefront Sensing Wavelength - Linear Regime

Spectral Teff Optimal | Photon flux” | Flux gain relative to ...

Type (K] Band?® [m~'.ms™] B R H

BOV 31500 U 1.08e10 2.14 12.06 1337.0

AQV 9700 B 5.01e7 1.00 4.25 204.7

FOV 7200 B 1.05e7 1.00 2.78 82.1 B-band WES is 33.7x
GOV 5920 B 1.34¢6 1.00 | 1.80 33.7 k® more efficient than
KOV 5280 B 3.26€5 1.00 1.33 17.6 [ H-band WFS

MOV 3850 R 3.53e4 2.03 1.00 3.93

M4V 3200 I 4.65e3 12.5 1.80 2.83

M8V 2500 J 6.00e2 150.0 11.6 1.98

Optimal bandwidth selected among standard astronomical spectral bands (U, B, R, I, J, H). Assumes
fixed relative spectral bandwidth d\/\. Central wavelength listed; bAssuming 10% effective spectral band
at optimal sensing wavelength, main sequence star at 10pc.



Real-time control vs. post-processing: Latency and Noise
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WFS- PSF relationship can be learned on-the-fly

Improving WFS reference from Focal Plane Image (DrWHO)

Pre DrWHO 1st Iteration 20th Iteration
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Evolution of the on-sky PSF before running the algorithm, after the first iteration,

and the after last iteration. Each image is 0.25 arcsec (40x40 pixels) across,

acquired at A = 750 nm, 30 sec exposure time (computed by co-addition of 15,000
frames acquired at 500 Hz) Skaf et al. 2022
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On-sky WFS—PSF Derivation with Neural Net

Input image Predicted image Truth image
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Credit: Barnaby Norris & Alison Wong



PSF Subtraction (RDI / ADI) relies on WF Stability
-> TELESCOPE stability requirement
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Are statistical properties of WF stable between observations ?



Self-Calibration relies on Stability of WFS—PSF Relationship
-> INSTRUMENT internal optics stability requirement

Wavefront Y Calibrated Science
Sensor Image

Wavefront Calibrated Science
Sensor ‘A |mage

Are optics between WFS and science image stable between observation ?



Ideal Hardware Configuration keeps relationship between
WFS and PSF stable

Wavefront ‘ . \ Science
Sensor relationship Image

should be as
stable as
possible

This stability is key to achieving ~1000x gain by PSF calibration

Can we build integrated coronagraph + WFS systems such that WFS-PSF relationship is stable over
time ? ... at the ~1e-12 contrast level




Options for WFS Integrated with Starlight
Suppression

Low-Order Coronagraphic Wavefront Photonic Nulling Circuit
Sensor / Zernike WFS
Optimized for simultaneous starlight
Bright starlight reflected/diffracted by focal suppression and wavefront sensing

plane occulter

Linear Dark Field Control (LDFC)

Post-coronagraph out-of-band
(spatial or spectral) light used for
WEFS/C.




LDFC WFSC Label 137
Science Scoring Region NI vs Control Iteration
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Optimal coronagraph conceptualized but then (2006) deemed

Radially averaged throughput

impossible to realize
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See also recent Belikov et. al work

Angular separation ( A/d)

.— Upper limit on the off-axis throughput
ronagraph for different stellar radii.

first 3 vectors M;) designed for a square aperture. The telescope pupil (top left) is decomposed in a series
of individual subpupils (shown in the input vector on the right of the pupil) which undergo interferometric
combinations through beam splitters. The coronagraph outputs isolates the first 3 modes found in an
extended source, as shown in the bottom right: C (= Mp), X (= M) and Y (= Ma). This coronagraph
produces a 4" order null and therefore provides some immunity to stellar angular size. The same technique
can be generalized to circular pupil and better sensitivity to stellar angular size (more vectors M; isolated).



Can now be realized with high-throughput photonic device
integrating WFS and Starlight Suppression

“Astrophotonics: The Rise of Integrated Photonics in Astronomy”

Norris & Bland-Hawthorn.

Optics and Photonics News (2019)

https.//www.osa-opn.org/home/articles/volume 30/may_2019/features/astrophotonics_the rise of_integrated_photonics_in/

Integrated-photonics concept

for hlgh—contrast Imaging Measurement and order-sorting is
performed via an energy-resolving
MKIDS detector.

This injects the light into
a nulling chip.
A telescope pupil is injected __J'
into a pupil-remapping chip
via an on-chip 3-D-printed
microlens array.

......

The output is spectrally dispersed
: at high spectral resolution via an
o i s arrayed-waveguide-grating-based
[ photonic spectrograph.

On-chip active modulation
allows the null to be carefully
tracked by dynamically
adjusting optical path length.

Illustration by Phil Saunders


https://www.osa-opn.org/home/articles/volume_30/may_2019/features/astrophotonics_the_rise_of_integrated_photonics_in/

Ultrafast Laser Inscription (ULI) allows for 3D photonic devices
with high broadband throughout in borosilicate glass

Laser beam
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Guided Light Interferometric Nulling Technology (GLINT)

instrument @ Subaru/SCExAO
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GLINT instrument”
Martinod, Norris, Tuthill...Guyon et al.
Nature Communications (2021)

“Scalable photonic-based nulling interferometry with the dispersed multi-baseline

link: https://www.nature.com/articles/s41467-021-22769-x



https://www.nature.com/articles/s41467-021-22769-x
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Deeper Broadband Contrast and WFS-optimized Chips:
Tricouplers and Phase Shifters

Tricoupler

3D beam combiner with perfect 120deg symmetry

2 input illuminated -> 3 output
Pl-phase shift between 2 input beams yields one
output null + 2 balanced WFS output

Tricoupler Devi 11 Depth .
| Tricoupler Device | Nall Dept Current tricoupler
Genl 22x10™* | performance at 1550nm,
Gen2 1.0x10-5 | expressed in null depth
Gen3 Block 1 17x10-6 | Credit: Elizabeth Arcadi,
M rie Univ.
Gen3 Block 3 1.0 x10™* acquarie U

Phase Shifter
Fine control of chromatic phase for broadband null
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Current nearlIR phase shifter achieves 1e-3 broadband null.
Improvement to 1e-4 underway. This is before WFC.
Credit: Glenn Douglas, Macquarie Univ.




Conclusions

Self-calibrating high contrast imaging systems could eliminate speckle noise

— Deeper detection limits, limited by photon noise in science images

— Coronagraph and telescope designed to relaxed contrast requirements, smaller IWA
— Reliable science data

Early on-sky experiments are encouraging, but there are tough challenges :
- Computation algorithms and speed in high-dimension space

- Hardware implementation: wavelength diversity, data acquisition speed, internal
stability

Photonic solutions well-suited for achieving self-calibration for high-performance
coronagraphy :

- Small number of degrees of freedom

- Can be spectrally dispersed



