Coronagraph Approaches to Relax Telescope Requirements*

(*) Exploring here wavefront stability only

Presenter: Olivier Guyon

University of Arizona NAOJ, Subaru Telescope NINS Astrobiology Center

Approaches to Relax Telescope Requirements

What is the Contrast Requirement?

of continuum)

1e-12

REQUIREMENT

Coronagraph Raw Contrast

Contrast scale

Self-Calibrating Coronagraph System

Fundamental Advantages of a Self-Calibrating Coronagraph System

... why can't a WFC loop achieve the same raw contrast as the post-processed PSF ? (separately from coronagraphy being extremely difficult at high contrast)

Correction null space > measurement null space

- Some errors can be seen by WFS but not corrected
- It is much easier to add/upgrade WFS to capture wide range of errors than to add/upgrade DMs to correct them

Sensitivity

- Speckle control WFC loop can only use light inside dark hole
- PSF calibration can use any starlight (out of band, outside dark hole)

Coherent mixing

- Speckle control WFS loop can be background-limited on zodi+exozodi, or needs to use large probes (not useful as science data)
- PSF calibration does not need probing, can use bright starlight with coherent mixing with WF errors (LDFC)

Time

- Speckle control WFC loop can only use past measurements (poor time response)
- PSF calibration can combine past, current and future measurements
- WFS can capture high speed errors (PSD) that cannot be corrected

Optimizing Wavelength for Sensitivity

Short wavelength : better optical gain from intensity to OPD Red target: higher photon count at longer wavelength

Table 6Optimal Wavefront Sensing Wavelength - Linear Regime

Spectral	Teff	Optimal	Photon flux ^b	Flux gain relative to			
Type	[K]	$\operatorname{Band}^{\mathbf{a}}$	$[m^{-1}.ms^{-1}]$	В	R	Η	
B0V	31500	U	1.08e10	2.14	12.06	1337.0	
A0V	9700	В	5.01e7	1.00	4.25	204.7	
F0V	7200	В	1.05e7	1.00	2.78	82.1	B-band WFS is 33.7x
G0V	5920	В	1.34e6	1.00	1.80	33.7	more efficient than
K0V	5280	В	3.26e5	1.00	1.33	17.6	H-band WFS
M0V	3850	R	3.53e4	2.03	1.00	3.93	
M4V	3200	Ι	4.65e3	12.5	1.80	2.83	
M8V	2500	J	6.00e2	150.0	11.6	1.98	

^aOptimal bandwidth selected among standard astronomical spectral bands (U, B, R, I, J, H). Assumes fixed relative spectral bandwidth $d\lambda/\lambda$. Central wavelength listed; ^bAssuming 10% effective spectral band at optimal sensing wavelength, main sequence star at 10pc.

Real-time control vs. post-processing: Latency and Noise

WFS→PSF relationship can be learned on-the-fly

Improving WFS reference from Focal Plane Image (DrWHO)

Evolution of the on-sky PSF before running the algorithm, after the first iteration, and the after last iteration. Each image is 0.25 arcsec (40x40 pixels) across, acquired at λ = 750 nm, 30 sec exposure time (computed by co-addition of 15,000 frames acquired at 500 Hz)

On-sky WFS → **PSF Derivation with Neural Net**

Credit: Barnaby Norris & Alison Wong

PSF Subtraction (RDI / ADI) relies on WF Stability -> <u>TELESCOPE</u> stability requirement

Are statistical properties of WF stable between observations ?

Self-Calibration relies on Stability of WFS→PSF Relationship -> <u>INSTRUMENT</u> internal optics stability requirement

Are optics between WFS and science image stable between observation ?

Ideal Hardware Configuration keeps relationship between WFS and PSF <u>stable</u>

This stability is key to achieving ~1000x gain by PSF calibration

Can we build integrated coronagraph + WFS systems such that WFS-PSF relationship is stable over time ? ... at the ~1e-12 contrast level

Options for WFS Integrated with Starlight Suppression

Low-Order Coronagraphic Wavefront Sensor / Zernike WFS

Bright starlight reflected/diffracted by focal plane occulter

Photonic Nulling Circuit

Optimized for simultaneous starlight suppression and wavefront sensing

Linear Dark Field Control (LDFC)

Post-coronagraph out-of-band (spatial or spectral) light used for WFS/C.

Wavefront <u>control</u> with spectral LDFC

(preliminary results from LDFC team)

Maintains <7e-9 contrast in the presence of 1e-6 dynamical WF aberrations

Raw contrast gain >100x demonstrated

PSF <u>calibration</u> with spatial LDFC

Average (dark removed)

Variance (RON+ PHN removed)

Optimal coronagraph conceptualized but then (2006) deemed impossible to realize

can be generalized to circular pupil and better sensitivity to stellar angular size (more vectors M_i isolated).

Can now be realized with high-throughput photonic device integrating WFS and Starlight Suppression

Illustration by Phil Saunders

Ultrafast Laser Inscription (ULI) allows for 3D photonic devices with high broadband throughout in borosilicate glass

Simon Gross, Glen Douglass, Teresa Klinner-Teo, Elizabeth Arcadi, Michael J. Withford, Barnaby Norris, Peter Tuthill, Marc-Antoine Martinod, Eckhart Spalding

Partnership with ULI group at Macquarie University to realize high-contrast photonic devices

Guided Light Interferometric Nulling Technology (GLINT) instrument @ Subaru/SCExAO

"Scalable photonic-based nulling interferometry with the dispersed multi-baseline GLINT instrument"

Martinod, Norris, Tuthill...Guyon et al.

Nature Communications (2021)

link: https://www.nature.com/articles/s41467-021-22769-x

Photometry #1 **On-sky demonstration** of self-calibrating Photometry #2 photonic chip reaches photon + readout noise Null #1 (B=5.5m) limit

Anti-null #1

Null #4 (B=2.15m)

Anti-null #4

GLINT – on-sky Alpha Boo

1.4 kHz frame rate

Deeper Broadband Contrast and WFS-optimized Chips: Tricouplers and Phase Shifters

Tricoupler

3D beam combiner with perfect 120deg symmetry 2 input illuminated -> 3 output *PI-phase shift* between 2 input beams yields one output null + 2 balanced WFS output

	Tricoupler Device	Null Depth	Current tricoupler performance at 1550nm		
	Gen1	2.2×10^{-4}			
	Gen2	1.0×10^{-5}	expressed in null depth		
	Gen3 Block 1	1.7 ×10 ⁻⁶	Credit: Elizabeth Arcad		
Gen3 Block 3		1.0×10^{-4}	Macquarie Univ.		

Phase Shifter Fine control of chromatic phase for broadband null

Current nearIR phase shifter achieves 1e-3 broadband null. Improvement to 1e-4 underway. This is *before WFC*. Credit: Glenn Douglas, Macquarie Univ.

Conclusions

Self-calibrating high contrast imaging systems could eliminate speckle noise

- \rightarrow Deeper detection limits, limited by photon noise in science images
- \rightarrow <u>Coronagraph and telescope designed to relaxed contrast requirements</u>, smaller IWA
- \rightarrow Reliable science data

Early on-sky experiments are encouraging, but there are tough challenges :

- Computation algorithms and speed in high-dimension space
- Hardware implementation: wavelength diversity, data acquisition speed, internal stability

Photonic solutions well-suited for achieving self-calibration for high-performance coronagraphy :

- Small number of degrees of freedom
- Can be spectrally dispersed