

Jet Propulsion Laboratory California Institute of Technology

Introduction and importance of yield tools for science requirements and mission requirements

Rhonda Morgan ¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

CL#23-2873

8 June 2023

Pre-decisional: for discussion purposes only

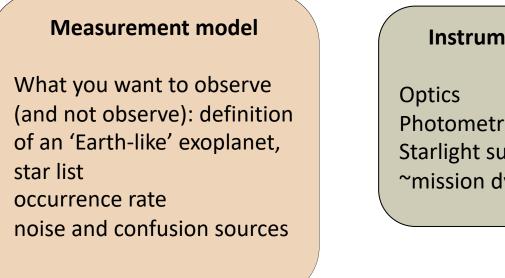
Agenda

https://exoplanets.nasa.gov/exep/events/456/exoplanet-yield-modeling-tools-workshop/

Session 1

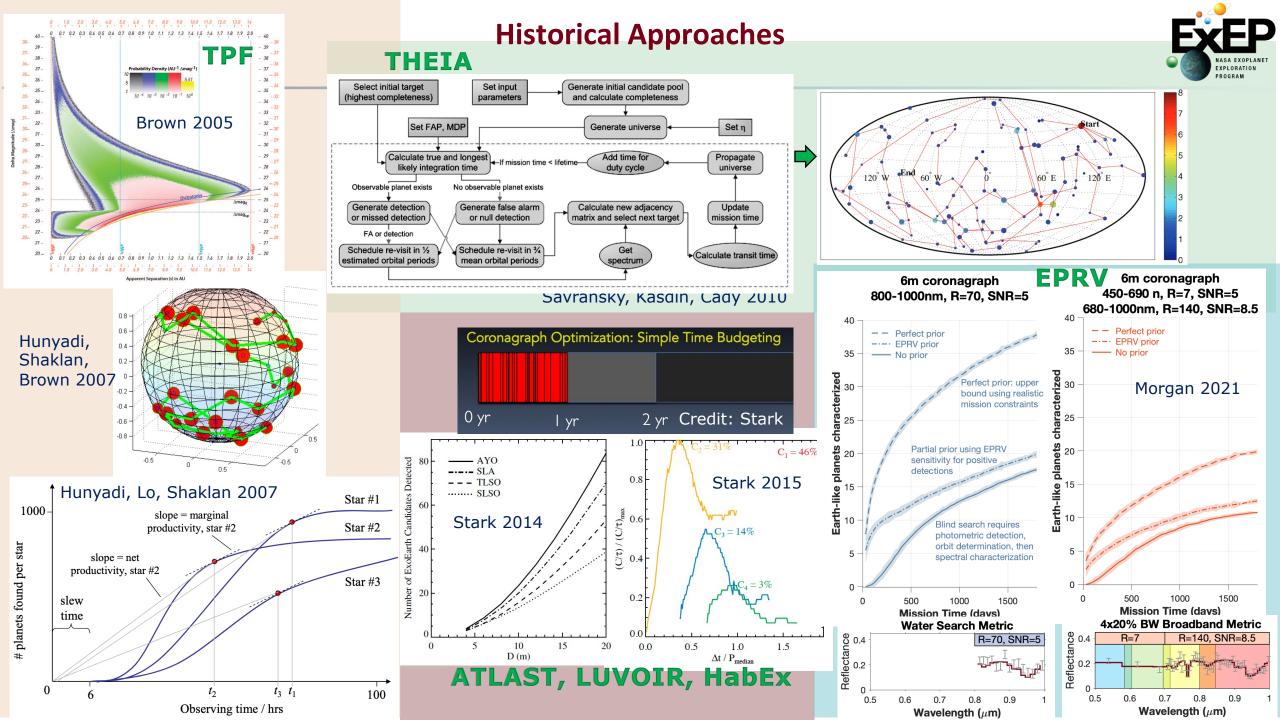
9:00 am - 11:00 am MT

12:30 pm - 3:00 pm MT


Speaker	Description	Duration
Rhonda Morgan	introduction and importance of yield tools for science requirements and mission requirements	10 min
Dmitry Savransky	detailed overview of EXOSIMS open source mission simulation tool	30 min
Chris Stark	detailed overview of AYO (Altruistic Yield Optimization)	30 min
Felix A. Dannert, ETH Zurich	Yield prediction for space-based nulling interferometry	10 min
Samantha Hasler, MIT	Reducing Detection Confusion in Directly Imaged Multi-Planet Systems	10 min
Margaret Bruna, Mcgill University	Orbit Retrieval of Directly Imaged Exoplanets: When and How to Look	10 min
SIG2	Current progress in demographics	5 min
Rhonda Morgan (facilitator)	Q&A and discussion of priorities for future model improvement	15 min

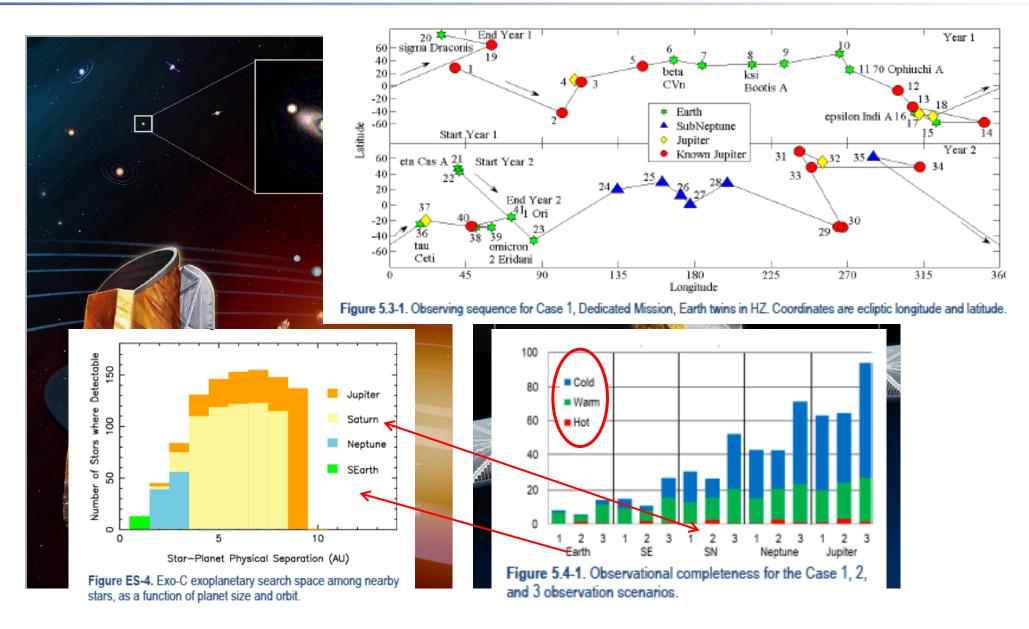
Session 2	
Description	Duration
Interactive tutorial of EXOSIMS using GoogleCollab and at least two sample problems	60 min
Interactive tutorial of ExoVista	40 min
Open hack time for participants to start on their own problems with assistance from tool developers	50 min

• We'll want to iterate, so be parametric to be computationally fast



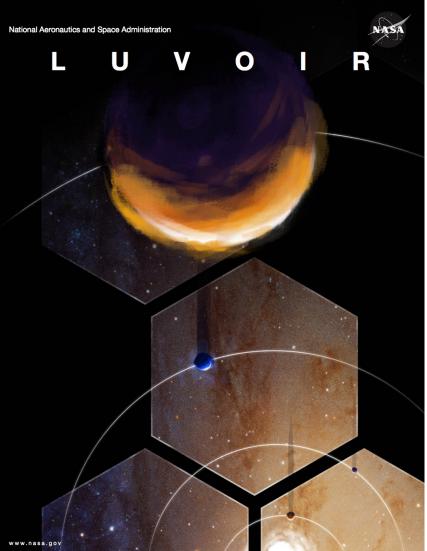
Instrument model

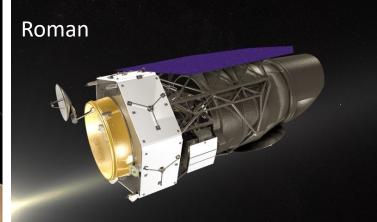
Photometry Starlight suppression ~mission dynamics


Mission model

- Allocating resources: exposure time, mission time, fuel.
- Allocation strategies would be different for target-limited or time-limited scenarios.
- For time-limited, efficiency concerns lead to desire for optimization schemes.
- Optimization and scheduling is its own field

Exoplanet Probe Studies (2015)

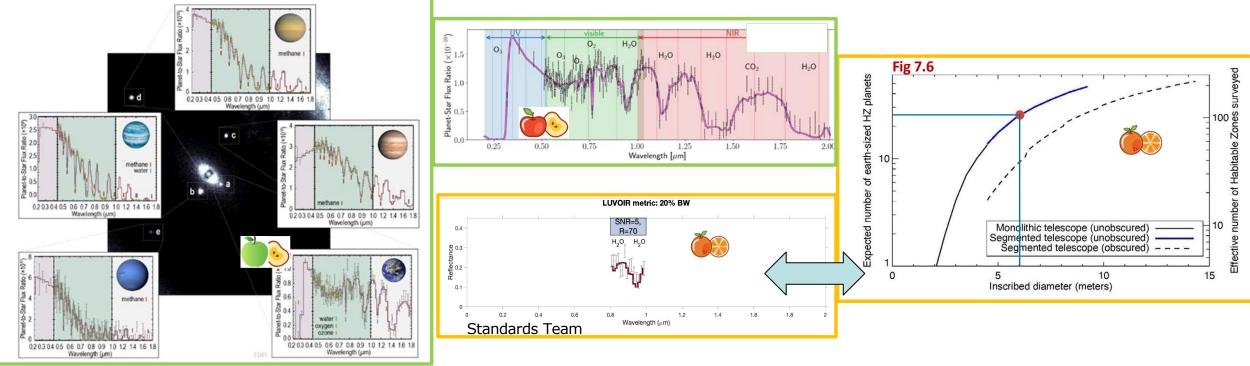



Exoplanet Direct Imaging Concept Missions

Standard Definitions and Evaluation Team

https://exoplanets.nasa.gov/exep/studies/sdet

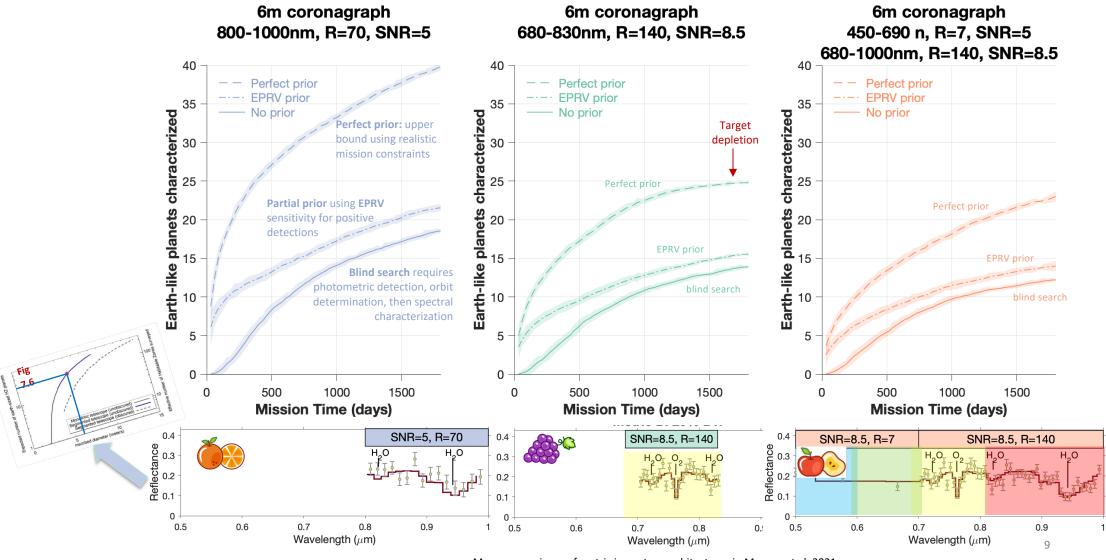
Chartered to provide a consistent, transparent yield analysis using common input parameters


NASA

EXOPLANET PROGRAM About Studies News Meetings/Events Resources Decadal STDTs SDET SSWG Probe Sca			
Standard Definition and Evaluation T	eam		The Standard Definitions and Evaluation Team Final Report Thorough
Overview Two of the four large mission concept studies for the Astrophysics Decadal Survey were designed to directly image and spectrally characterize earth-like exoplanets. In 2016, the Astrophysics Division chartered an Exoplanet Standard Definition and Evaluation Team (ExSDET) for the purpose of providing an unbiased science yield analysis of the multiple large mission concepts using a transparent and documented set of common inputs, assumptions and methodologies.	Documents • SDET Charter • SDET Final Report		THE STANDARD DEFINITIONS AND EVALUATION TEAM FINAL REPORT A COMMON COMPARISON OF EXOPLANET YIELD THOROUGH GISCUSSION of discussion of astrophysical inputs
 Over the course of the past three years, the ExSDET has responded to the direction provided in the charter and the required deliverables by performing the following tasks: Develop analysis tools that will allow quantification of the science metrics of the mission studies Incorporate physics-based instrument models to evaluate both internal and external occulter designs Establish the science metrics that define the yield criteria Cross validate the various analytical methodologies and tools Provide complete evaluations using common assumptions and inputs of the exoplanet yields for each mission concept. 	Cases • Case 1: HabEx 4H hybrid, metric C1 • Case 2: LUVOIR B, metric A • Case 3: HabEx 4C, metric C2 • Case 4: HabEx 4S, metric C2 Links • EXOSIMS on Github • AYO for LUVOIR • Habitable Exoplanet Observatory	Target List	National Aeronautics and Space Administration JeP Propulsion Laboratory California Institute of Technology Pasadena, California A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2019. All rights reserved. Government sponsorship acknowledged.
and instrument designs, along with their nominal operating plans, using common input assumptions and analysis methodologies. This report is explicitly <i>not</i> intended to present an exploration of the capabilities of the full design spaces available to the various mission concepts. Due to large uncertainties in the astrophysics inputs, particularly exo-earth occurrence rate, the yield values should be considered relative rather than absolute.	(HabEx) Large UV-Optical-Infrared Surveyor LUVOIR 	Occurrence Rates	HabEx Instrument Obs Sconario EXOSIMS
A. Water line R = 70, SNR = 5 B. Oxgen + Water R = 140, SNR = 5, R = 70, SNR = 5 lines R = 70, SNR = 5 C.1 Hab£x Full R = 7, SNR = 5 Architecture Trade R = 70, SNR = 10 Architecture Trade R = 70, SNR = 8.5 D. LUXOF Full R = 7, SNR = 5 Spectrumn A 300 300 500 600 Wavelength (mm) 1000 Figure 1. Characterization metric A facilitates a quick search for the water line at 940 nm with a	Papers • EXOSIMS Overview in JATIS • EXOSIMS Overview • EXOSIMS Validation • AYO 2014 • AYO 2015 • AYO 2016 Starshades	ExoZodi Planet Types Planet Properties	Obs Scenario LUVOIR Instrument Obs Scenario Vield

Astro2020 recommendation for exoplanets

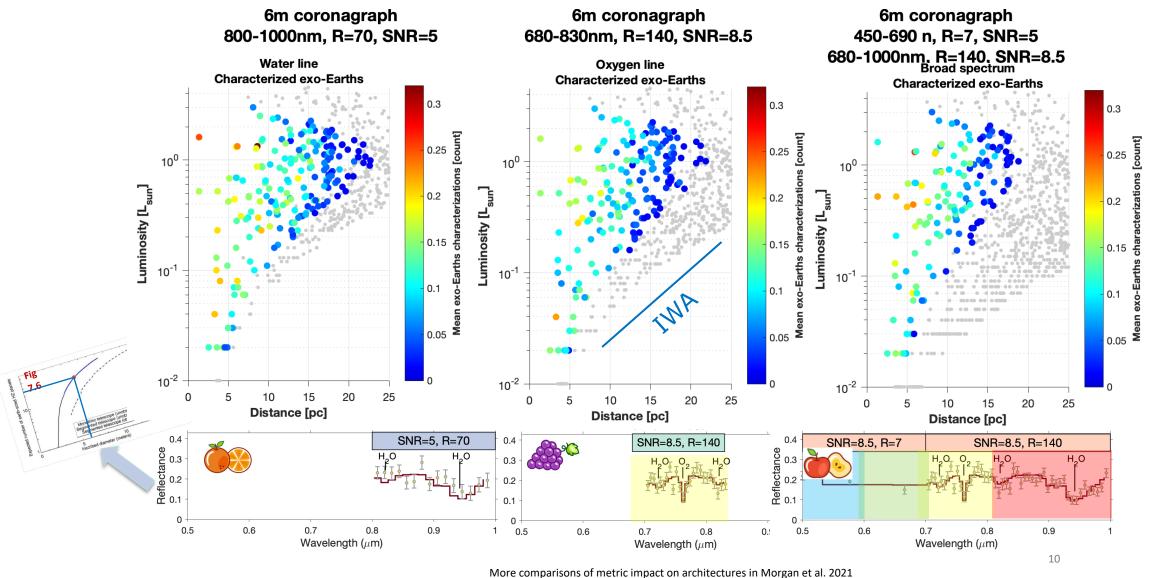
- Astro2020 recommended a "future large IR/O/UV telescope optimized for observing habitable exoplanets and general astrophysics" to be **ready by end of the decade**
- Astro2020 recommended "to search for biosignatures from a robust number of about ~25 habitable zone [exo]planets"



- Building on the work done by large concept studies and the Standards Evaluation Team, we can iterate, address nuances, and incorporate progress to map exoplanet science goals to planet characterization to metrics
- This will not be easy!
- Characterization is complicated, and will likely involve multiple measurements. ... This means we'll have more than one metric

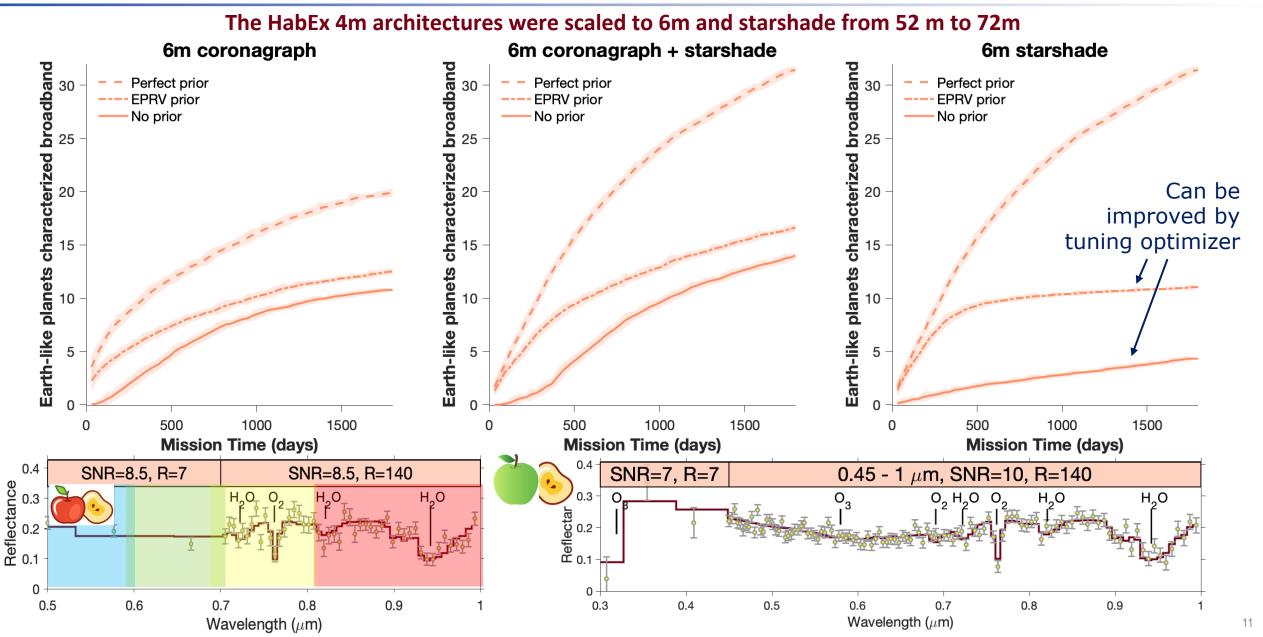
Different yield metrics reveal different sensitivities

Observing scenario, SNR, spectral resolution, number of sub-spectra, and precursor knowledge effect yield.

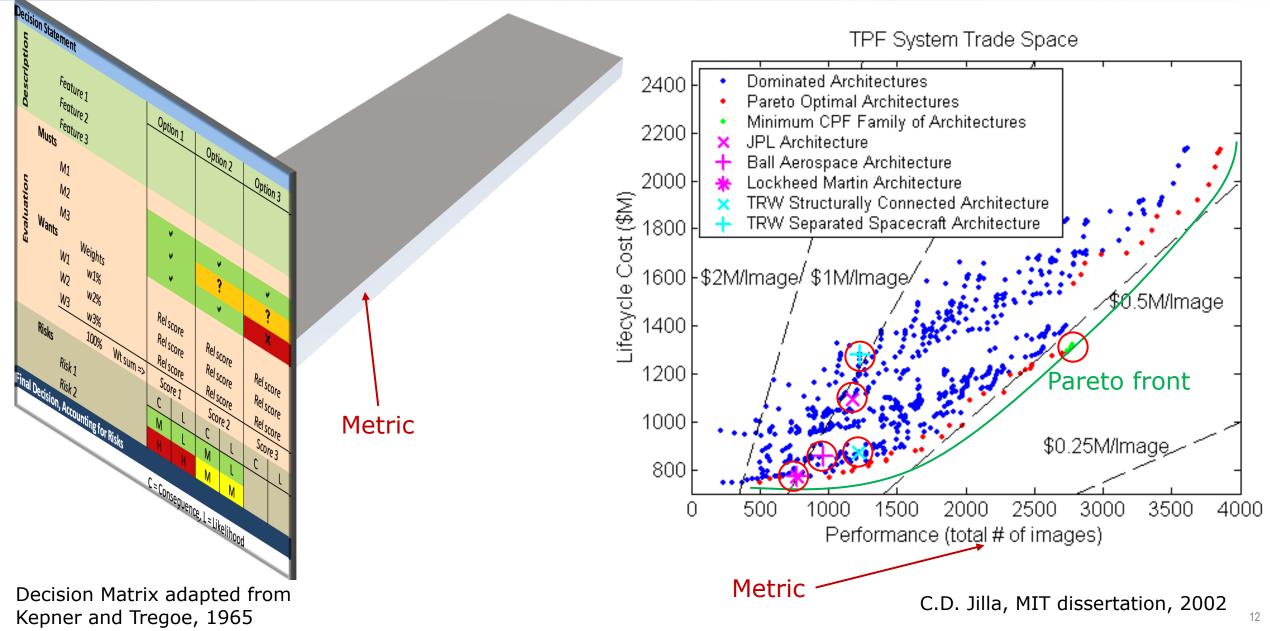

More comparisons of metric impact on architectures in Morgan et al. 2021

https://doi.org/10.1117/1.JATIS.7.2.021220

Different yield metrics reveal different sensitivities


Observing scenario, SNR, spectral resolution, number of sub-spectra, and precursor knowledge effect yield.

https://doi.org/10.1117/1.JATIS.7.2.021220


Yield with broadband metric for three architectures

Metrics are used to quantify trades

Science Traceability Matrix (STM)

13

- A tool to communicate how the science shapes the mission
- Flows the science goals and objectives to instrument and mission requirements
- Science objectives should be quantified

Yield tools link the flow of science observables to mission requirements

Table 2: 0	Drigins Science	Traceability Matrix							
			Science Requirements		Instrument Requirements				Mission Requirements
NASA Science Goals	Origins Science Goal/ Question	Science Objectives	Science Observable	Measurement Requirement	Parameter	Technical Requirement	CBE Performance	Driver	Parameter
How does the Universe work?	loes the gala model ¹ Iniverse sta		Measurement model		Instrument performance model				Mission model
	their central supermassive black holes from	to a SFR of 1 M _☉ /yr at cosmic noon and 10 M _☉ / yr at z~5, performing the	mita and rar-irx emission lines.	uepurs, respectively.	of-view) Spectral line sensi- tivity	1.5x10 ⁻²⁰ Wm ⁻² at250μm (1 hr; 5σ)	8x10 ⁻²¹ Wm ⁻² at250 μm (1 hr; 5σ)	control	• TomeetObjectives#1-#3,a cold aperturewitha temperature <6K.
	reionization totoday?	first unbiased survey of the co-evolution of stars and supermassive black	leveraging a deep 1 deg ² 2 µm im-	Extragalactic: In a deep integration the ability to resolve the	Wavelengths Angular resolution	50 and 250 µm ≤3" at 50 µm to resolve > 99% CIB	50 and 250 μm 2.1"	atic error	• Down to a line flux sensitivity of 10 ⁻¹⁹ W m ⁻² ability to map better than 0.15
		holes over cosmic time. Measure the metal and dust content of at least 10 ⁵ galaxies out to z=6 as a function of cosmic time,	NIRCAM, a ~500 deg ² medium depth survey for large- scale struc-	CIB at 50 µm and de-blendthe250 µm map. Galactic: Ability to map star-forming regions including	Flux Density sensitivity	1.75 μ Jy (5 σ) at 50 μ m over 1 deg ² in 400 hours. 3.8 μ Jy (5 σ) at 250 μ m over 1 deg ² in 25 hours.	$\begin{array}{c} \text{deg} 0.2\mu\text{Jy}(5\sigma)at50\mu\text{m}\\ \text{over}1deg^2\text{in}400\\ \text{hours}.0.6\mu\text{Jy}(5\sigma)at\\ 250\mu\text{m}\text{over}1deg^2\text{in}\\ 250\mu\text{m}\text{over}1deg^2\text{in}\\ 25\text{hours}. \end{array}$	ิต	deg ² /hr and efficient scan mapping at a rate as high as 60 arcsec/sec. • To enable access to all targets of interest, the field of
		morphology, and environ-	ture overlapping with WFIRST-HLS,	regions, including point sources with	Polarization sensitivity	1% (3σ) in linear and circular	$0.1\%(3\sigma), 1$ degree in	bility	regard shall be 4π sr over the course of the

Pre-Session:

Pre-recorded short talks on the fundamental concepts of yield modeling

Speaker	Title	Links
Eric Mamajek	Star Catalogs	Video I PDF
Jessie Christiansen	Occurrence rates and planet demographics	Video I PDF
Eric Nielsen	Planet generation Planet propagation and Orbit geometry	Video I PDF
Bertrand Mennesson	Zodiacal Light	Video I PDF
Bijan Nemati	Photometrics Part 1 - Coronagraph Parameters and SNR	Video I PDF Parts 1-3
	Photometrics Part 2 - SNR Structure	Video
	Photometrics Part 3 - Random Noise and Time to SNR	Video
John Krist	Starlight suppression system modeling	Video I PDF
Dmitry Savransky	Completeness Delta Mag and Integration Time	Video I PDF
Shannon Dulz	Bonus 1 - Population Demographics Modeling	Video I PDF
Bijan Nemati	Bonus 2 - Photon Counting with EMCCDs	Video I PDF

The purpose of this workshop is to:

- Bring together the vibrant communities of mission and instrument designers and yield modelers to share their expertise
- Introduce fundamental concepts in exoplanet imaging yield modeling
- Present state of the art yield modeling tools available for use today and provide basic instruction in their use
- Discuss gaps in yield modeling approaches and potential future efforts to close them

Session 1 9:00 am - 11:00 am MT

12:30 pm - 3:00 pm MT

Speaker	Description	Duration
Rhonda Morgan	introduction and importance of yield tools for science requirements and mission requirements	10 min
Dmitry Savransky	detailed overview of EXOSIMS open source mission simulation tool	30 min
Chris Stark	detailed overview of AYO (Altruistic Yield Optimization)	30 min
Felix A. Dannert, ETH Zurich	Yield prediction for space-based nulling interferometry	10 min
Samantha Hasler, MIT	Reducing Detection Confusion in Directly Imaged Multi-Planet Systems	10 min
Margaret Bruna, Mcgill University	Orbit Retrieval of Directly Imaged Exoplanets: When and How to Look	10 min
SIG2	Current progress in demographics	5 min
Rhonda Morgan (facilitator)	Q&A and discussion of priorities for future model improvement	15 min

Session 2	
Description	Duration
Interactive tutorial of EXOSIMS using GoogleCollab and at least two sample problems	60 min
Interactive tutorial of ExoVista	40 min
Open hack time for participants to start on their own problems with assistance from tool developers	50 min

Starlight Suppression Workshop Aug 8-10

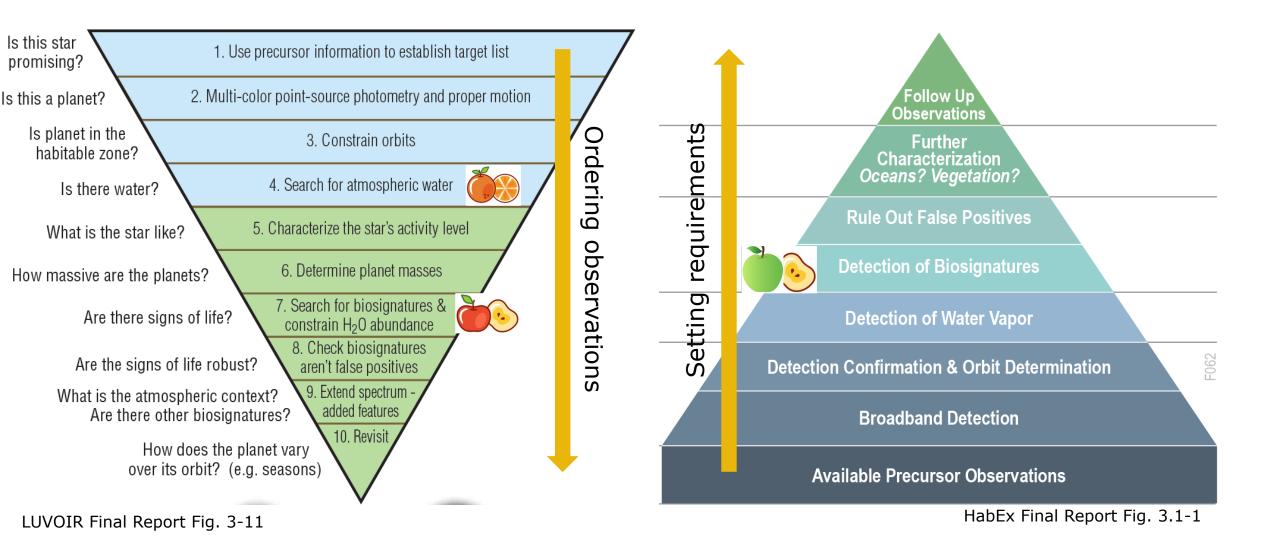
https://exoplanets.nasa.gov/exep/events/457/towards-starlight-suppression-for-the-habitable-worlds-observatory-workshop/

NASA **EXOPLANET PROGRAM** About Studies News Meetings/Events Resources Technology NExScl ExoPAG For the Pu **MEETINGS & EVENTS** Towards Starlight Suppression for the Habitable Worlds Observatory Workshop Date: August 8, 2023 - August 10, 2023 **Downloads** Location: **Draft Block Agenda** 400 S. Wilson Ave. Pasadena, CA 91106 Day 1 Day 2 Day 3 Tue Aug 8 Wed Aug 9 Thu Aug 10 view map Welcome Morning REGISTER Habitable Worlds Ultra-Stable Coronagraphy Observatory Observatory Coronagraphy Lunch August 8-10, 2023 Time TBA Afternoon Trades, Concerns, Coronagraphy Starshade Plans Forward Chairs: Brendan Crill (NASA/JPL) and Laura Coyle (Ball Aerospace) **Virtual Poster Abstract Submission** NASA has begun planning for an ambitious program (coming soon) to develop the Habitable Worlds Observatory

(HWO) - the first in a panchromatic suite of Great

Observatories recommended by the Astro2020


The agenda of talks will consist of invited



BACKUP


The technical data in this document is controlled under the U.S. Export Regulations, release to foreign persons may require an export authorization.

Observing Strategy impact on metrics

