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Our Home: Planet Earth




Our Home: Planet Earth

Has plate tectonics!

/

Drive important
geological processes
occurring such as the

carbon cycle
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The carbon cycle regulates the climate of a planet over
long timescales
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The carbon cycle regulates the climate of a planet over
long timescales

Regassing or ingassing -> when carbon is
subducted into the mantle of a planet
Degassing or Outgassing-> when carbon escapes
from the mantle through volcanic eruptions and
mid-ocean ridges




We mainly obtain atmosphere observations for exoplanets

and therefore it is crucial to study their evolution and how

interior processes can shape the atmosphere we observe
today with telescopes!




TRAPPIST-1 System _

[[lustration
Credit: NASA/JPL-Caltech



The TRAPPIST-1 planets have been observed many times
since their discovery

TRAPPIST-1b

* It is very unlikely that the
TRAPPIST-1 planets have
hydrogen-dominated atmospheres
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* It is expected that these planets
either have a high molecular
weight atmosphere or no
atmosphere at all
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TRAPPIST-1b was looked at with JWST!

Article | Published: 27 March 2023

Thermal Emission from the Earth-sized Exoplanet
TRAPPIST-1b using JWST

Thomas P. Greene [, Taylor J. Bell, Elsa Ducrot, Achréne Dyrek, Pierre-Olivier Lagage &

Jonathan J. Fortney

* They looked at the thermal emission from the planet with MIRI:
found a dayside temperature of ~500K
« Suggests that it has no significant atmosphere!




To study the role of

GOAL:

In the evolution of the

atmospheric composition and planetary climate for
TRAPPIST-1d, e, f




How do we study this?
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Outgassing Models
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We consider a range of oxygen fuge:ccities (fO,) for TRAPPIST-1 d,
e and
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Oxygen Fugacity (fO,)

2(1-x) Fe + O,(g) = 2 Fe,,O (wustite)

Py, 0 o f1/2
Hx(9) + 2 Ox(g) = H,0(g) Py, 0 R
P Feo
CO(g) + Y2 Og(g) = COA(g) ot o fo!?
Cco

500 600 700 800 900
Temperature (°C

Seifert et al. (2010) Eu. J. Min.

 Controls relative gas abundances (e.g. H,/H,O, CO/CQO.,).
 Carbon outgassing rates depend on it.

Modified from: Laura Schaefer



Gas Composition at fixed fO,
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Gas Composition at fixed fO,
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Outgassing Models
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We model the carbon cycle and incorporate the deep water
cycle (Schaefer & Sasselov 2015) to track the gas species
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We use Driscoll & Bercovici 2013 and Foley 2015 to calculate
surface temperatures for TRAPPIST-1 planets

450 ——— . ——— Driscoll & Bercovici 2013:
4 _ T4 3 :
Ty =T, (1 +ZT9) where:
400 | Ry | F
g Tg = p + 2
p k.w k,c
S 350
*g T, = surface temperature
g T, = equilibrium temperature
£ 300 74 = optical depth at surface
2 P,, = water partial pressure
§ 250 P, , = water opacity pressure
‘g P. = carbon dioxide partial pressure
N Py, . = carbon dioxide opacity pressure
200
Foley 2015:
P\ 0-346
100 10 102 10° 10* Fe

Time (Myr)




Our model also accounts for photochemistry and
atmospheric escape
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Atmospheric Composition of TRAPPIST-1 d

Low fO, (IW) High fO, (IW + 4)
Reduced: Oxidized:
Expectation: H, and CO Expectation: CO, + H,O
Result: Mainly H,O Result: CO, + H,O

Gonzalez-Quiles et al. (In Prep)



Atmospheric Composition of TRAPPIST-1 e
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Atmospheric Composition of TRAPPIST-1 e

Low fO, (IW) High fO, (IW + 4)

Reduced: Oxidized:
Expectation: H, and CO Expectation: CO, + H,0O
Result: Mainly H,O with H, Result: CO, + H,0
declining over time

Gonzalez-Quiles et al. 2023 (In Prep)
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Atmospheric Composition of TRAPPIST-1 f

Low fO, (IW) High fO, (IW + 4)
Reduced: Oxidized:
Expectation: H, and CO Expectation: CO, + H,O
Result: Mainly H, Result: CO, + H,O

Gonzalez-Quiles et al. 2023 (In Prep)



Our results suggest that the atmospheric composition of
these planets may depend on the oxygen fugacity and
outgassing rates, but other important processes can also
impact the atmospheric composition of these planets!




What’s Up Next?
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Summary

Modeling the'de e and the carbon cycle is important for
understandlng en SL @sphere interactions and their effect
on habitability of exoplane S.

Outgassing models were run-forl

Tor d, e and f for different
oxygen fugacities. TR

Oxygen fugacity can impact outgassmg a B e influence the

atmospheric composition of planets.
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TRAPPIST-1 Parameters

TRAPPIST | Radius Mass d (Yeartn) Teq (K) Core Water Mass Rcore
-1 Planets (Rearth) (Meartn) Mass Fraction (wt | (Rearth)
Fraction %)
(wt %)

0.788 0.388 19.7 103 (104, 2)

0.92 0.692 0.817 246  0.3(10%, 2.1)

1.045 1.039 0.951 20.1 1.0 (0.6,3.4)  0.49

Agol et al. 2021 PSJ 2:1

W @JunellieG



