Diamonds in the Rough Finding Thousands of New Planet Candidates Around Faint Stars

Michelle Kunimoto TESS Postdoctoral Scholar, MIT

ExoExplorers Series May 12, 2023

NASA/JPL-Caltech

New planets may be rare outcomes of planet formation

or evolution

Introduction

NASA/ESA/CSA/Leah Hustak (STScl)

Introduction

New planets may

be rare

outcomes of

planet formation

or evolution

New planets may

be exciting

targets for

further

characterization

Introduction

New planets may be rare outcomes of planet formation or evolution

> Finding many planets lets us explore exoplanet demographics

NASA/JPL-Caltech

New planets may

be exciting

targets for

further

characterization

NASA's Transiting Exoplanet Survey Satellite (TESS) 2018 - Present

All-sky survey designed to find exoplanets around nearby, bright stars amenable to follow-up

TESS sky coverage over the Prime Mission (2018 - 2020)

More efficient automated vetting is needed for large-scale TESS planet searches!

 there is no fully automated vetting pipeline available for TESS planet searches

- there is no fully automated vetting pipeline available for TESS planet searches
- what worked for Kepler won't necessarily work for TESS

- there is no fully automated vetting pipeline available for TESS planet searches
- what worked for Kepler won't necessarily work for TESS
- humans are inherently biased

- there is no fully automated vetting pipeline available for TESS planet searches
- what worked for Kepler won't necessarily work for TESS
- humans are inherently biased
- fully automated vetting is needed for robust statistical studies of exoplanet populations (demographics)

Signals detected in a planet search can be classified into three major categories:

Signals detected in a planet search can be classified into three major categories:

Signals detected in a planet search can be classified into three major categories:

False Positives

False Alarms

Current series of tests, inspired by the Kepler *Robovetter* (Coughlin et al. 2017; Thompson et al. 2018) but fine-tuned for TESS

- Model fits: straight line, trapezoid, transit model, sinusoid
- Model-shift uniqueness tests: assesses the uniqueness of events, including secondaries
- Odd-even depth comparison tests: compare depths of odd/even events
- V-shape test: checks if an object is both grazing and large
- Individual event tests: checks consistency and validity of individual events
- **Difference images:** pixel-level data products to identify off-target signals (in collaboration with **Dr. Steve Bryson**, NASA Ames)
- ... many others ...

The performance of the vetting pipeline has been tested on simulated planets and false alarms:

After implementing these tests into the pipeline:

Reviewed all signals and refined vetting algorithm with fellow postdoc Tansu Daylan (MIT/Princeton)

Results

Results

~2000 hot Jupiter TOIs

Results

Results

Several of these confirmed giants orbit M dwarfs

TOI-3884 b: First sub-Saturn found transiting a mid-M dwarf (Almenara [+ Kunimoto] et al. 2022)

TOI-3884 b: First sub-Saturn found transiting a mid-M dwarf (Almenara [+ Kunimoto] et al. 2022)

TOI-5205 b: First Jupiter found transiting a mid-M dwarf (Kanodia et al. 2023)

Astronomers Discover Bizarre "Forbidden" Planet That Should Not Exist

Scitech Daily

Katharine Cain/Carnegie Institution for Science

TOI-3884 b: First sub-Saturn found transiting a mid-M dwarf (Almenara [+ Kunimoto] et al. 2022)

TOI-5205 b: First Jupiter found transiting a mid-M dwarf (Kanodia et al. 2023)

TOI-3757 b: Lowest density transiting planet known to orbit an M dwarf (Kanodia et al. 2022)

Katharine Cain/Carnegie Institution for Science

TOI-4010: Metal-rich K-dwarf ([Fe/H] = +0.37)

Highlighted Discoveries

Cool things about TOI-4010

1. Comparative Planetology

TOI-4010 has THREE large planets in close-in orbits, all with atmospheres

Mass-radius curves from Zeng et al. (2018)

20 - 104 10 · 10³ Planet radius (R_®) Š TOI-4010 d flux 10² TOI-4010 c Insolation 101 3 TOI-4010 b - 10⁰ 0 10^{-1} 10² 10^{0} 10^{1} Orbital period (days)

Planets in the NASA Exoplanet Archive with density measured to better than 50% precision

Cool things about TOI-4010

2. A planet in the hot Neptune desert

TOI-4010 b is one of the only hot Neptunes in a multi-planet system

Cool things about TOI-4010

3. Particularly massive sub-Saturns

TOI-4010 d is one of the most massive sub-Saturns found in a multi-planet system

Mass-host star metallicity diagram for sub-Saturns (4 - 8 R)

Cool things about TOI-4010

4. Moderately eccentric super-Jupiter companion

Still monitoring RVs to complete the orbit and determine the correct period

Summary & Future Plans

- automated vetting is needed for large-scale planet searches
- I'm close to a fully automated TESS vetting pipeline, with applications to both planet searches and exoplanet demographics
- will be made publicly available for use by the exoplanet community
- 2922 TOIs so far many more upcoming!
 - several TOIs are rare outcomes of planet formation and promising targets for follow-up