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Upgrading the Gemini Planet Imager (GPI)s Wavefront Sensor
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Talk Qutline

Broad

Exoplanet detections methods & direct imaging
Planet formation theories (hot vs. cold start)

Instrument detection capabilities & formation characterization
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My work!
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Exoplanet Detection Methods...

Transit Method Radial Velocity Method  Direct Imaging Method
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Credit: Alysa Obertas Credit: NASA

Credit: NASA



Exoplanet Discoveries So far...

Mass — Period Distribution

31 Mar 2023
exoplanetarchive.ipac.caltech.edu
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How do directly imaged exoplanet systems form?

Protoplanetary Disk (Age ~ 100,000 years) Planetary System (Age ~ 30 million years)

2009-07-31

Credit: Jason Wang (Northwestern)/William Thompson
(UVic)/Christian Marois (NRC Herzberg)/Quinn

Credit: ALMA, C. Brogan, B. Saxton
HL Tau SyStem Konopacky (UCSD)

HR 8799 System



Two Main Planet Formation Theories.... credit: nasa and a. Feild (sTscl)

Accretion model

Central star

r

C

Dust disk
Orbiting dust grains accrete
into "planetesimals™ through
nongravitational forces.

Gas-collapse model

_

A protoplanetary disk of gas
and dust forms around a
youngqg star.

Planetesimals grow, moving in
near-coplanar orbits, to form
"planetary embryos."”

“Cold Start”

=—=Plapet-

=1

Gravitational disk instabilities
form a clump of gas that be-

comes a self-gravitating planet.

Gas-giant planets accrete gas
envelopes before disk gas
disappears.

/Gas giant

=

Dust grains coagulate and
sediment to the center of the
protoplanet, forming a core.

“Hot Start”

Gas-giant planets scatter or
accrete remaining planetesimals
and embryos.

The planet sweeps out a wide
gap as it continues to feed on
gas in the disk.




Formation & Entropy (Spiegel & Burrows 2012)

Evolution of Entropy

Specific Entropy (kB/baryon)

"Cold Start"

"Hot Start"

6'51 1-0
Core accretion: the solid core accretes gas
through an accretion disk. This process cools
the gas, causing it to lose much of its initial
entropy and forms a giant planet that has low
initial entropy

Age (Myr)

160 1000

Gravitational Instability: the gas that collapses
directly to form a giant planet retains most of it
initial entropy, resulting in high initial entropy (i.e. a
"hot-start”).



Entropy & Luminosity (Chilcote et al 2018)

In first few million years after formation, giant planets that started hot can be ~10 to 1,000x more luminous than those that
started cold depending on the giant planet's mass and spectral band.
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GPI 1.0

e The Gemini Planet Imager is a high 24 Myr (8PMG)

2M,

contrast imaging instrument
e (perated for 6 years on the Gemini South

Observatory
e [Detects and characterizes Jupiter-mass oy HR 2562 B
o . o Macintosh et al. (2014) Konopacky et al. (2016)
exoplanets in wide orbits Rejan et al. (2017)

24 Myr (BPMG)
13 M,

e Aimed to measure the frequency of
exoplanets of wide orbit gas giants

e [Decommissioned in August 2020 for
upgrades

e Will be moved to Gemini North HR 8799 cde

B Picb
Ingraham et al. (2014) hilcote et al. (2015, 2017)
Greenbaum et al. (2018) Wang et al. (2016)



GPI1.0—GPI1 2.0

e Science Goal: Achieve higher contrast to find Jupiter-like planets closer to their stars
and consistent with “cold start” formation models

0 T ™
Cold Starte
Hot Starte |
GPI11.0 contrast limit:
. ! ] magnitude 9 targets
s Lo
>
S| \ ‘ .
= 100 x 7 GPI 2.0 contrast limit:
e . magnitude 14 targets
s |
© 5
Simulated '
population of //;0
exoplanets! 0.1 1.0

Separation (")

Credit: Chilcote et al. 2018 10



GPI1.0—GPI1 2.0

e Upgrades to:
o Pupil coronagraph masks
o Top-level software
o Calibration Unit
m New Prisms
m Optomechanics Upgrade
o Adaptive Optics
m Pyramid Wavefront Sensor Upgrade
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Adaptive Optics

Light from
Jelescope

Distorted
Wavefront
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Control Corrected
Sysltem Wavefront
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- T Sensor

Credit:
ScienceDirect/Claire Max

Without Adaptive Optics

Credit: ESO
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Pyramid Wavefront Sensor Upgrade

Shack-Hartmann Wavefront Sensor (GP1 1.0) Pyramid Wavefront Sensor (GP12.0)

e Lenslet array receives a tilted wavefront e Each face of the prism deflects the light
and the spot is shifted. in a different direction onto four pupil

e Measuring the spot displacement images on the detector
enables to derive the wavefront error e Higher sensitivity to low order

aberrations = better contrast
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Pyramid Wavefront Sensor Upgrade (HAA)

Nuvu Trlplet Lens
EMCCD

Fast

Steering

Mirror 1

Baffle

Pyramid
Fast

Fold Mirror

Steering
Mirror 2
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The EMCCD

(Do O et al. in prep)
The EMCCD overview:

e Electron multiplying CCDs (EMCCDs)
are detectors capable of counting
single photon events at high speed
and high sensitivity.

50

100

e 8 outputs

150

e Operates at 2 kHz (max 3kHz)

e Operates at -45 °C

0 50 100 150 200 15



The EMCCD: Motivation

e Thedelayisthe camera

. . Windspeed Percentile:
readout time + real time 10% 50%

control (RTC).

e ForGPl2.0,theaimisto
have the RTC at 100 ps,
such that the camera
readout dominates the

contrast enhancement
[ N w = w (o)} ~ (o]

delay. _ | _
PY EMCCD hasafast readOUt 450 560 660 760 860 4§0 560 6(30 760 860 4§O 560 6(30 760 8(30
total delay (us)
time

Credit: Madurowicz et al 2020
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The EMCCD: Outputs

Output 1

2 )

Output 5

Median Bias Frame at - 45 °C

Output 2
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Output 8
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(Do O et al. 2023 in prep)
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The EMCCD: Readout Noise

Working with fainter targets requires a low noise camera

Readout Noise Test (Gain 5,000)

= oum Output Median Readout Noise (e-)
= o 1 0.169787
B = ours 2 0.167197
P = osmee 3 0.139553
2 4 0.150889
* 20 5 0.132648
6 0.103851
7 0.071985
0 8 0.127600

0.00 . 010 015 020 0.55 0.30
Readout Noise (e-)

(Do O et al. 2023 in prep)



The EMCCD: Multiple Regions of Interest

Looking at specific regions of the camera allows for faster readout

Multiple Regions of Interest Test

Full Frame

(Do 0 et al. 2023 in prep)

1050

° Counts [ADU]
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Wavefront Sensor Upgrade Status

e Status: all parts now at UCSD
e EMCCD arrived last Fall!
e Currently aligning our wavefront

sensor components
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Current Instrument Status

Preparing GPI for
shipping at Gemini
South

Going down Arriving in Notre

In Transit

the mountain Dame Unloaded

In the lab!
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Summary

“Cold start” planets are fainter than “hot start” planets and require

more contrast to be directly imaged

GPI 2.0 will reach fainter targets than GPI 1.0
Upgrade has begun!

| am testing the EMCCD for GPI 2.0’s pyramid wavefront sensor
AO subsystem upgrades will allow for higher contrast
Currently aligning our wavefront sensor components
Commissioning in 2024A at Gemini North
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