Ambiguities in transit spectra of habitable zone rocky planets due to unknown surface conditions

Evelyn Macdonald, Kristen Menou, Christopher Lee, and Adiv Paradise ExoExplorers Seminar Series, April 21 2023

Context

• M-Earths:

- Tidally locked rocky planets with M-dwarf hosts
- Focus on those in the liquid water habitable zone
- $\circ~$ Atmospheres can be studied with JWST

- Transit spectroscopy:
 - Planet passes in front of star
 - Measure wavelength-dependent amount of light blocked
 - $\circ~$ Identify molecules from planet's spectrum

Context

- So far:
 - Very little data about M-Earth atmospheres
 - Simulations are computationally expensive
- Questions:
 - How does land influence M-Earth climates?
 - How does atmosphere mass influence M-Earth climates?
 - Can we tell these climates apart observationally?
- Tools:
 - Climate model: ExoPlaSim¹
 - Radiative transfer model: petitRADTRANS²

Why ExoPlaSim?

- Fast 3D general circulation model (GCM)
- Useful for large parameter space surveys and general trends
- In general agreement with other GCMs (e.g. SAMOSA intercomparison)

Sneak preview: synthetic transit spectra

- Identical simulation configurations except for surfaces and atmospheres
- Can we infer climate from a planet's transit spectrum?

M-Earth climates

Rough approximation: "eyeball" climate

(Pierrehumbert, 2011)

What happens if we put land in the warm region?

Dayside land

- 2 opposite land configurations
- Vary size of circle
- N_2 atmosphere with trace CO₂
- How does land configuration affect climate?
- Can we tell these configurations apart on a real planet?

How does land configuration affect climate?

Substellar ocean

- Based on Proxima Centauri b
- Clouds and precipitation are at the substellar point regardless of land configuration
- Large land masses are hot and dry

How does land configuration affect climate?

- Both amount and configuration of land affect temperature and water vapour
- Largest discrepancy at partial dayside land cover due to differences in ice-free ocean aera

How much water makes it to the terminator?

10

10-3

 10^{-1}

Transit Spectra

Water vapour transit spectra for a range of dayside land fractions

Transit Spectra

- Amplitude of the largest water vapour feature varies much more in substellar continent models
- Water vapour would be difficult to detect in all cases

Optimizing simulations for water vapour detectability

- Smaller star: larger relative planet size
- Smaller planet: lower gravity and larger scale height

How does atmosphere mass affect climate?

- How does the effect of atmosphere mass depend on land configuration?
- Can we disentangle these effects in observations?

How does atmosphere mass affect climate?

- Low substellar land fraction and high atmosphere mass contribute to warmer climates
- Land fraction and configuration still have a significant effect

Transit Spectra

Water vapour transit spectra for a range of dayside land fractions and atmosphere masses

Water Vapour Detectability

- Water vapour is much easier to detect on this smaller planet
- Very difficult to infer land fraction or configuration
- Unknown atmosphere mass adds uncertainty

What happens when we include clouds?

- Smaller water vapour features in cloudy transit spectra
- Some spectra are more affected by clouds than others

Clouds

- Spectral features are smaller when clouds are included
- Clouds disproportionately obscure signals from moist atmospheres
- **Result:** climate states are even more difficult to tell apart.

Conclusions

- M-Earth parameter space has a broad range of climates
- Land and atmosphere mass have interacting climate effects
- It will be hard to tell a planet's land configuration or atmosphere mass from its transit spectrum
- Many different climates with similar spectra could be habitable
- Small planets orbiting small stars have favourable geometry for transit spectroscopy
- Next step: investigate climates with massive atmospheres in more detail