Hazy with a Chance of Star Spots:

Constraining the Atmosphere of the Young Planet, K2-33b

Pa Chia Thao | UNC Chapel Hill ExoExplorers Talk

March 17th, 2023

Dynamics, Structure, and Atmosphere

Atmosphere

Dynamics, Structure, and Atmosphere

Dynamics, Structure, and Atmosphere

Image Credit: NASA + A. Fuji/ESA + M. Gembec + T. Vance + F. Lauterbach

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 17 Rizzuto+2018, Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 18 Rizzuto+2018, Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 19 Rizzuto+2018, Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 20 Rizzuto+2018, Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022

Goal:

to characterize the atmosphere of the young planet, K2-33b

K2-33b

Age ~ 10 Myr P = 5.5 days $R_p = 5.0 R_{\oplus}$ $T_{eff} = 768$ K

Video Credit: NASA/JPL-Caltech

33 transits 0.64 - 4.5µm

~2x transit depth difference

~2x transit depth difference

Unconstrained Systematics

~2x transit depth difference

Unconstrained Systematics

Astrophysical

Astrophysical

Astrophysical

• •

Unconstrained Systematics

Astrophysical

Spots

Unocculted Spots

Unocculted Spots

Occulted Spots

Occulted Spots

Q: What is the spot coverage fraction required to produce the observe transit depths?

Unocculted Spots

$$\delta_{\lambda,obs} = \frac{\delta_{\lambda,true}}{1 - f_{spot}(1 - \frac{F_{\lambda,spot}}{F_{\lambda,star}})}$$

$$\delta_{\lambda,obs} = \frac{\delta_{\lambda,true}}{1 - f_{spot}(1 - \frac{F_{\lambda,spot}}{F_{\lambda,star}})}$$

Stellar Spectra

Unocculted Spots

Stellar Spectra

Q: What is the spot coverage fraction constrained from the stellar spectrum?

Unocculted Spots

spot

Stellar Spectra

Q: What is the spot coverage fraction constrained from the stellar spectrum?

Unocculted Spots

Unconstrained Systematics

Astrophysical

Spots

Unconstrained Systematics

Astrophysical

~2x transit depth difference **Astrophysical**

Size ~ Optical λ

Size ~ Optical λ

0.5

Size > NIR λ

1.1

Haze parameters

Haze parameters

Transit radius	Optically thick regime (τ _{ing} >> 1) • Ring's physical size limits transit depth • Ring acts to make flat spectrum Contribution of ring's occultation
l	Ring free spectrum
	Wavelength

Ohno+2023

Image credit: NASA

• Young planets are pivotal to the picture of planetary evolution

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes
- The optical transits were ~2x deeper than the NIR transits

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes
- The optical transits were ~2x deeper than the NIR transits
- Three scenarios were tested: 1) spots; 2) photochemical hazes; 3) circumplanetary dust ring

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes
- The optical transits were ~2x deeper than the NIR transits
- Three scenarios were tested: 1) spots; 2) photochemical hazes; 3) circumplanetary dust ring

K2-33 likely contains a modest spot coverage (<20%). Further data is needed to determine the origin of the transit depth difference
Summary

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes
- The optical transits were ~2x deeper than the NIR transits
- Three scenarios were tested: 1) spots; 2) photochemical hazes; 3) circumplanetary dust ring

K2-33 likely contains a modest spot coverage (<20%). Further data is needed to determine the origin of the transit depth difference

Pa Chia Thao | pachia@live.unc.edu

Ohno+2023 1

Acknowledgement

Andrew Mann

Peter Gao

Dylan Owens

Andrew Vanderburg

Elisabeth Newton

Yao Tang

Matthew Fields

Tim-Oliver Husser

Kazumasa Ohno

Jonathan Fortney

Jonathan M. Irwin

Trevor David

Sarah Ballard

Young Worlds Lab

THYME + ZEIT Collaboration

ExoExplorers Program

JACK KENT COOKE

Summary

- Young planets are pivotal to the picture of planetary evolution
- Explored the transmission spectrum of the ~10 Myr, K2-33b using ground and space-based telescopes
- The optical transits were ~2x deeper than the NIR transits
- Three scenarios were tested: 1) spots; 2) photochemical hazes; 3) circumplanetary dust ring

K2-33 likely contains a modest spot coverage (<20%). Further data is needed to determine the origin of the transit depth difference

Pa Chia Thao | pachia@live.unc.edu

Ohno+2023 1