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Old planets

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 
Rizzuto+2018,Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022
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Old planets vs. Young planets 

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 
Rizzuto+2018,Mann+2016, Obermeier+2016, Bouma+2020, Mann+2022, Newton+2021, David+2019, Newton+2022, Barber+2022, Zhou+2022
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K2-33b

Credit: NASA Exoplanet Archive; Plavchan+2020, Gilbert+2022, Newton+2019, Mann+2017, Tofflemire+2021, Mann+2020, Rizzuto+2020, Barragán+2020, Mann+2017, Mann+2018, Stefansson+2020, 
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to characterize the 
atmosphere of the 
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K2-33b 
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Goal: 
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K2-33b

Age ~ 10 Myr

P =  5.5 days 

Rp =  5.0 R
⊕

Teff =  768 K

Video Credit: NASA/JPL-Caltech

http://www.youtube.com/watch?v=Kx5R22c9Ml8&t=15
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Image adapted from: NASA, J. Olmsted (STScI)
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Hubble (1)

Image adapted from: NASA, J. Olmsted (STScI); MEarth Project
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Figure credit: B. Morris (HAT-P-11b) 
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Figure credit: B. Morris (HAT-P-11b) 
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Unocculted Spots
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Q: What is the spot coverage 
fraction required to produce the 
observe transit depths? 
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Tspot

Tstar
= star temperature

= spot temperature

fspot = fraction of star with spots
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McCullough+2014; Rackham+2018
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star area coverage spot contrast

McCullough+2014; Rackham+2018
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photosphere
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fraction of spots (fspot ) ,  calibration terms, 
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Rings



Image Credit: R. Miller
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Spots Hazes Rings
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Image credit: NASA
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● Young planets are pivotal to the picture of planetary evolution 
● Explored the transmission spectrum of the ~10 Myr, K2-33 

using ground and space-based telescopes 
● The optical transit were ~2x deeper than the NIR transits 
● Three scenarios were tested: 1) spots; 2) photochemical

hazes; 3) circumplanetary dust ring

Summary
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