

State of the Art of Coronagraph Technology

Brendan Crill, Pin Chen, Nick Siegler

NASA Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Jan 7, 2024

Copyright 2023 California Institute of Technology. U.S. Government sponsorship acknowledged. This document has been reviewed and determined not to contain export-controlled technical data.

Requirements

2

Best Broadband Contrast Lab Demonstrations to Date

NASA EXOPLANE EXPLORATION PROGRAM

State of the Art Lab Demonstrations

(Segmented Apertures)

-4

-5

-8

-9

polarized light

2-Log₁₀(NI)

polarized light

unpolarized light

Habitable Worlds Observatory requirements (CBE, ref. Astro2020 Table E.1)

- <u>IWA</u>: ~ 60 mas:
 - VVC (LUVOIR-B) design meets requirement for λ < 0.62 µm (6-meter aperture), whereas the required spectral coverage might be as wide as 0.3 – 1.8 µm
- <u>OWA for Spectroscopy</u>: ~ 500 mas
 - VVC (LUVOIR-B) design meets requirement for λ > 0.52 µm, whereas the required spectral coverage might be as wide as 0.3 1.8 µm
- <u>OWA for Imaging Only</u>: ~ 1"
 - VVC (LUVOIR-B) design meets requirement for λ > 1.0 μm
- <u>Contrast:</u> ~ 1E-10
 - APLC and HLC (LUVOIR-A) designs surpass the requirement (even for an on-axis aperture) for *average* contrast (over the stated dark zone) and *point-source* stars
 - At 3 λ /D, only the HLC (LUVOIR-A) design produces 1E-10
 - Stellar diameter (or pointing jitter) has a large impact on contrast at 3 λ /D, but much smaller impact on average contrast
 - WFE due to random segment-piston jitter is generally disastrous at 100 pm RMS but tolerable at ~ 10 pm RMS
- <u>Bandwidth</u>: ~ 20% or greater
- Meeting all requirements will likely require a combination of coronagraphs

State of the Art Lab Demonstrations

(Clear Aperture)

Recent Coronagraph Lab Demonstrations

Coronagraph Type	HWO goal	Classical Lyot	Vector Vortex charge 4	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph	Vector Vortex charge 4
Aperture Type		Circular un (off-axis n	obscured nonolith)	Off-axis segmented mirror	Circular on-axis static segmented mask	Circular off-axis static segmented mask
Deformable Mirrors	2x 96 x 96	2 AOX (each 48 x 48 act)	2 AOX (each 48 x 48 act)	2 BMC MEMs (each 1k act)	1 BMC MEMs (1k act)	1 BMC MEMs (2k act)
Separation Range	3-45 λ/D	5-13.5 λ/D (vs 3-10 λ/D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D	3-10 λ/D
Dark Hole Azimuthal Extent (deg)	360	180 (vs 360)	180	180	180	180
Mean Raw Contrast over Sep. Range	1 x 10 ⁻¹⁰	<mark>4 x 10⁻¹⁰ (idem)</mark>	5.9 x 10 ^{.9} (1.6 x 10 ^{.9})	2 x 10 ⁻⁸	1.8 x 10 ⁻⁸	4.7 x 10 ⁻⁹
Central wavelength (nm)	300-1300	550	635	638	650	635
Spectral bandwidth	20%	20% (10%)	20% (10%)	Monochromatic	10%	10%
Number of polarizations	2	1	1	2	1	1
Off-axis Throughput	high	medium	high	high	high	high
Sensitivity to low order aberrations	low	medium	low	medium	medium	low
Facility and Testbed		JPL HCIT-2 DST	JPL HCIT-2 DST	STScl HiCAT	JPL HCIT-2	JPL HCIT-2 DST
Vacuum Operation Currently dem	nonstrated st	Y atic contrast performanc	Y e degrades when movi	N ng toward coronagraph	Y s with higher throughpt	Y at and lower

sensitivity to aberrations, moving from monolithic to segmented apertures, and from off-axis to on-axis

Modification of an original Bertrand Mennesson table 7

Recent Starlight Suppression Demos

Coronagraph Type	HWO goal	Classical Lyot	Vector Vortex charge 4	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph	Vector Vortex charge 4	Starshade subscale flight Fresnel number
Aperture Type		Circular un (off-axis n	nobscured monolith)	Off-axis segmented mirror	Circular on-axis static segmented mask	Circular off- axis static segmented mask	n/a
Deformable Mirrors	2x 96 x 96	2 AOX (each 48 x 48 act)	2 AOX (each 48 x 48 act)	2 BMC MEMs (each 1k act)	1 BMC MEMs (1k act)	1 BMC MEMs (2k act)	n/a
Separation Range	3-45 λ/D	5-13.5 λ/D (vs 3- 10 λ/D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D	3-10 λ/D	1.7-7 λ/D
Dark Hole Azimuthal Extent (deg)	360	180 (vs 360)	180	180	180	180	360
Mean Raw Contrast over Sep. Range	1 x 10 ⁻¹⁰	4 x 10 ⁻¹⁰ (idem)	5.9 x 10 ⁻⁹ (1.6 x 10 ⁻⁹)	2 x 10⁻ ⁸	1.8 x 10 ⁻⁸	4.7 x 10 ⁻⁹	2 x 10 ⁻¹¹
Central wavelength (nm)	300-1300	550	635	638	650	635	680
Spectral bandwidth	20%	20% (10%)	20% (10%)	Monochromatic	10%	10%	10%
Number of polarizations	2	1	1	2	1	1	1
Off-axis Throughput	high	medium	high	high	high	high	high
Sensitivity to low order aberrations	low	medium	low	medium	medium	low	n/a
Facility and Testbed		JPL HCIT-2 DST	JPL HCIT-2 DST	STScl HiCAT	JPL HCIT-2	JPL HCIT-2 DST	Princeton Frick
Vacuum Operation		Y	Y	Ν	Y	Y	Ν

Simulated Coronagraph Performances

Coronagraph Type	Aperture Type	Aperture [m]	λ _c [nm]	BW	IWA [λ/D]	OWA [λ/D]	Core Throughput	Average Contrast	Contrast @ 3λ/D, point star	Contrast @ 3λ/D, 1 mas star	ΔContrast @ 3λ/D due to 100 pm rms piston jitter
VVC	LUVOIR-B	8	575	10%	2.8	28	30%	5.E-10	3.E-10	1.E-09	6.E-09
APLC	LUVOIR-A	15	575	10%	3.8	12	15%	6.E-11	8.E-10	2.E-09	2.E-09
HLC	LUVOIR-A	15	575	10%	3.5	10	15%	3.E-11	1.E-10	2.E-10	3.E-09

- The table includes only coronagraphs recently analyzed by SCDA*
- The designs used deformable mirrors with 64 actuators across the diameter
- Manufacturability of the designs will be assessed (as part of the ExEP Coronagraph Technology Roadmap work)
- The table does not include all important aberrations. For example, all three coronagraphs are extremely sensitive to misalignment of the telescope's exit pupil with respect to the coronagraph's entrance pupil.
- The listed APLC and HLC are for LUVOIR-A. The LUVOIR-B aperture can enable substantially better performance (contrast/throughput/IWA). An HLC-LUVOIR-B design will be completed in FY23

*Segmented Coronagraph Design & Analysis study led by the ExEP