DEPARTMENT OF ASTRONOMY AND ASTROPHYSICS

Exoplanets & Habitable Worlds

Seeking to discover habitable planets and life beyond the Solar System.

NEID Sun-as-a-star Observations for Evaluating Stellar Variability Mitigation Strategies

> Jason Wright AAS EPRV Splinter Session January 9, 2023

Team & Acknowledgments

NASA EPRV Grant team members: Eric Ford (PI), Suvrath Mahadevan, Joe Ninan, Ryan Terrian, Jason Wright, Alex Wise; Sam Halverson, Michael Palumbo, Arpita Roy

NEID Instrument & Science Teams

NEID Solar Telescope: Andrea Lin, Andrew Monson + rest of the NEID Team

Additional support from: Heising-Simons Foundation (construction & granulation studies), NOIRLab (operations), NExScI (archiving), and Penn State Institute for Computational & Data Sciences (research pipeline)

New Challenges for Precision Doppler Planet Surveys

Movie Credit: NSO/NSF/AURA This product is licensed under <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u>. For image use conditions, please visit image use page .

Spot Simulation: C. Gilbertson

Image Credit: NSO/AURA/NSF

Lots to learn from Sun-as-a-Star Observations

NEID

Credits: EPRV WG Final Report. NASA, ESA, SDO/HMI, MURaM, Big Bear Solar Observatory, Solar RV observations from HARPS-N, Cegla/Haywood/Watson

Stellar Variability Limits RV Planet SurveySensitivity

EPRV WG Report (Crass et al. 2022) demonstrated that intensive observing campaigns could characterize masses of Earth-analog planets to support direct imaging missions, *assuming* that stellar variability could be accurately subtracted (grey histogram).

Luhn et al. (2022) showed that noise due to stellar variability will significantly reduce mass precision of such surveys, unless further progress is made.

Architecture VIIIa

J. Luhn, Ford et al. 2022

Need further research in modeling stellar variability to characterize Earth-analogs

Several groups have proposed strategies to separate stellar variability from true Doppler shifts.

EXPRES Stellar Signals Project

- Compared 22 different methods for mitigating effects of stellar variability on EXPRES RVs
- Each method appeared to help (e.g., reduce RMS of RVs).
- But... they didn't agree.
- How can we know which (if any) were accurate?

NEID Sun-as-a-Star Observations

NEID Sun-as-a-Star Observations

Exoplanet Survey Characteristics

- ~ 50 100 target stars
- ~ 1 several spectra / star / night
- ~ 5 15 year survey duration
- Sparse and irregular sampling (weather, conflicts with other targets)
- True stellar velocity is *unknown*
- Only spatially unresolved data

NEID Sun-as-a-Star Observations

Exoplanet Survey Characteristics

- ~ 50 100 target stars
- ~ 1 several spectra / star / night
- ~ 5 15 year survey duration
- Sparse and irregular sampling (weather, conflicts with other targets)
- True stellar velocity is *unknown*
- Only spatially unresolved data

Solar Observations

- Only 1 Sun
- ~200 spectra / day
- Same duration as exoplanet survey
- Dense sampling, still irregular (weather)
- True solar velocity is known
- Spatially resolved data is available

NEID Solar RVs archived at NExScl

https://neid.ipac.caltech.edu/search_solar.php

Solar Radial Velocity Archive

🔍 SEARCH 🔺 NEID ARCHIVE 🛭 🚱 HELP 🛛 CONTACT

Search the Solar RV Archive

Modern extremely precise radial velocity spectrographs are now being built with the capacity to feed light from the sun into the instrument in order to aid our understanding of the instrumental characteristics and the Doppler noise caused by convective motion on the surface of stars. The NASA-NSF Exoplanet Observational Research (NN-EXPLORE) program and the NASA Exoplanet Science Institute (NExScI) located at the California Institute of Technology are working together to provide the community access to the solar data products from as many instruments as possible. Reduced solar data products from the NEID spectrograph built by the Pennsylvania State University are currently available for download.

News

Files flagged for rejection are now hidden from the results table by default. These files may be flagged for low signal-to-noise, a poorly determined wavelength solution, or other data quality issues. Check the "Include files flagged for rejection" checkbox below if you wish to display the rejected files.

The EXTSNR value, which is a measure of the signal-to-noise in the extracted spectrum at the wavelength specified in the target submission GUI, is now displayed in the results table.

Pyrheliometer data is available here.

Instrument		Observation date (UTC)	Data level			
NEID	~	04/19/2022 - 04/25/2022	select	•	Search	Clear Form
		mm/dd/vvvv				

Include files flagged for rejection \Box

1,257 rows returned (1,257 downloadable files)

Level 2 ×	× Id < 1 of 3 ▶ ▶ (1 - 500 of 1,257)												9 🗉 🖪 🍾		
filename char	obsdate char	exptime double	obsmode char	obstype char	program char	piname char	sunagi double	seeing double	ccfidsum double	ccfrvmod double	dvrms double	swversion char	extsnr double	rejected int	
neidL2_20220423T222959.fits	2022-04-23 22:29:59	55.000433	hr	Eng	2022A-2002	Mahadevan	43.4917	0.0	2459693.43280339	-0.7933	3e-4	v1.1.2	404.0569	0	1
neidL2_20220423T222836.fits	2022-04-23 22:28:36	55.00136	hr	Eng	2022A-2002	Mahadevan	43.7757	0.0	2459693.43184662	-0.7926	3e-4	v1.1.2	404.6031	0	
neidL2_20220423T222713.fits	2022-04-23 22:27:13	55.000171	hr	Eng	2022A-2002	Mahadevan	44.0593	0.0	2459693.43088918	-0.7929	3e-4	v1.1.2	403.7314	0	
neidL2_20220423T222551.fits	2022-04-23 22:25:51	55.0008	hr	Eng	2022A-2002	Mahadevan	44.3427	0.0	2459693.42993287	-0.7935	3e-4	v1.1.2	404.6872	0	
neidL2_20220423T222428.fits	2022-04-23 22:24:28	54.999571	hr	Eng	2022A-2002	Mahadevan	44.6258	0.0	2459693.42897583	-0.7931	3e-4	v1.1.2	404.4677	0	
neidL2_20220423T222305.fits	2022-04-23 22:23:05	55.000327	hr	Eng	2022A-2002	Mahadevan	44.9085	0.0	2459693.42801868	-0.7926	3e-4	v1.1.2	403.6533	0	
neidL2_20220423T222143.fits	2022-04-23 22:21:43	55.00035	hr	Eng	2022A-2002	Mahadevan	45.1909	0.0	2459693.42706182	-0.7924	3e-4	v1.1.2	404.8658	0	
neidL2_20220423T222020.fits	2022-04-23 22:20:20	54.999682	hr	Eng	2022A-2002	Mahadevan	45.4729	0.0	2459693.42610412	-0.793	3e-4	v1.1.2	405.1536	0	
neidL2_20220423T221857.fits	2022-04-23 22:18:57	55.000618	hr	Eng	2022A-2002	Mahadevan	45.7546	0.0	2459693.42514811	-0.792	3e-4	v1.1.2	405.4256	0	
noidl 2 20220422T221724 fite	2022 04 22 22:17:24	EE 000402	br	Eng	20224 2002	Mahadovan	46.026	0.0	2450602 42410065	0.702	20.4	v1.1.2	404 700E	0	

Create script to download files

NN EXPLORE NE

username

password

Login

Our Project Goals

- Provide value-added data products
 - Identify high-quality observations
 - Account for peculiarities of sun-as-a-star observations (i.e., differential extinction, apparent solar rotation rate)
 - CCFs & RVs based on curated line lists
- Beta release available via Globus
 - Contact Eric Ford <u>eford@psu.edu</u> for details

Our Project Goals

- Provide value-added data products
 - Identify high-quality observations
 - Account for peculiarities of sun-as-a-star observations (i.e., differential extinction, apparent solar rotation rate)
 - CCFs & RVs based on curated line lists
- Compared "cleaned" RVs based on multiple strategies for mitigating stellar variability:
 - Doppler-constrained PCA (Jones et al. 2017, 2022)
 - SCALPELS (Collier Cameron et al. 2020)
 - FIESTA (J. Zhao et al. 2022)

We'll be working on these for 2023.

Characterizing Solar Granulation Model with NEID Solar Observations

Compute RMS of binned consecutive RVs as a function of number of bins

- 55 sec exposures
- 28 or 38 sec dead time

⇒ RMS decreases more slowly than $1/\sqrt{n}$ due to oscillations & granulation

Developed physically motivated GP model for oscillations, granulation & active regions (Guo et al. 2022, Luhn et al. 2022)

Calibrating model with NEID solar observations (Ford et al. in prep)

Our Project Goals

- Provide value-added data products
 - Identify high-quality observations
 - Account for peculiarities of sun-as-a-star observations (i.e., differential extinction, apparent solar rotation rate)
 - CCFs & RVs based on curated line lists
- Compared "cleaned" RVs based on multiple strategies for mitigating stellar variability:
 - Doppler-constrained PCA (Jones et al. 2017, 2022)
 - SCALPELS (Collier Cameron et al. 2020)
 - FIESTA (J. Zhao et al. 2022)
- Support comparisons with other solar telescopes
 - Comparison Solar observations from HARPS-N, HARPS & EXPRES in progress (L. Zhao et al. in prep)

DEPARTMENT OF ASTRONOMY AND ASTROPHYSICS

Exoplanets & Habitable Worlds

Seeking to discover habitable planets and life beyond the Solar System.

Questions

Illustration: Lynette Cook

NEID Solar Observations

NEID's Order RVs are individually precise!

