An update on MAROON-X

Jacob Bean¹

Core Team: Andreas Seifahrt¹, David Kasper¹, Madison Brady¹, Rafael Luque¹, & Julian Sturmer² Plus many collaborators and users ¹University of Chicago²Heidelberg Observatory

MAROON-X

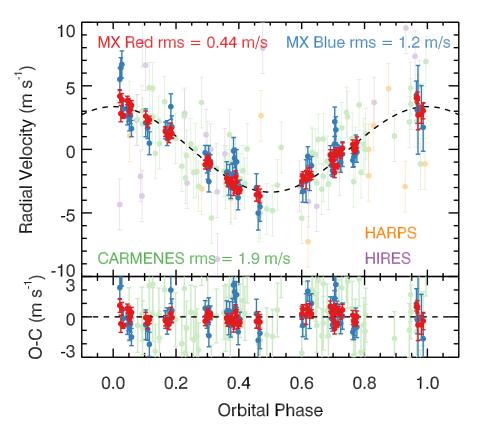
Primary Science Driver: EPRV measurements of Earth-sized exoplanets, particularly around M dwarfs.

Specifications: A highly-stabilized, fiber-fed spectrograph covering 500 – 920 nm at R 85,000 with simultaneous calibration, and a sky fiber.

Status: Commissioned in 2019, in regular operations since May 2020, and offered to the community.

Performance: 30 cm/s precision and reach to late M dwarfs as faint as $m_v=19$.

More Info: Seifahrt+ 2016, 2018, 2020, 2022 SPIE


Extreme Precision Radial Velocity instrument at Gemini-N

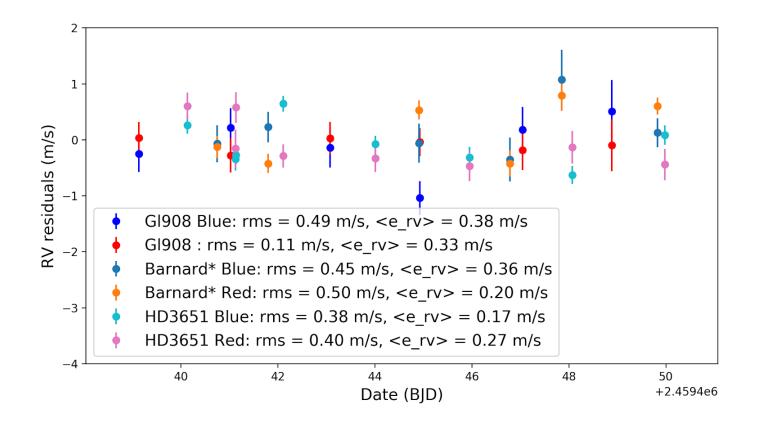
You should know about MAROON-X

- MAROON-X is a Gemini "Transition Instrument", operations is like a Visitor Instrument but the Observatory is committed to taking ownership
- MAROON-X is not on the telescope all the time, ~150 nights per year in six blocks of 1 5 weeks each
- MAROON-X time on the telescope is driven partially by demand, ~600 hours of Band 1-2 time allocated over the past year
- Gemini is open access (through the US system) and queue scheduled, has Fast Turnaround and Bad Weather programs
- We currently perform all data reduction and can provide radial velocities from a template-matching code (SERVAL)
- The MAROON-X team is very small and we welcome new users and collaborators

MAROON-X performance

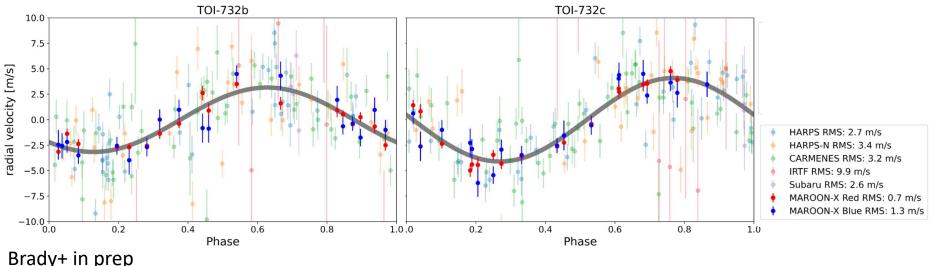
Data taken in May 2020 yield a precise mass measurement of GI 486 b

K = 3.4 ± 0.1 m s⁻¹ M_p = 2.8 ± 0.12 M_{earth} (σ < 5%)


No detrending!

Red + blue residuals bin down to **30 cm s⁻¹** over 30 minutes

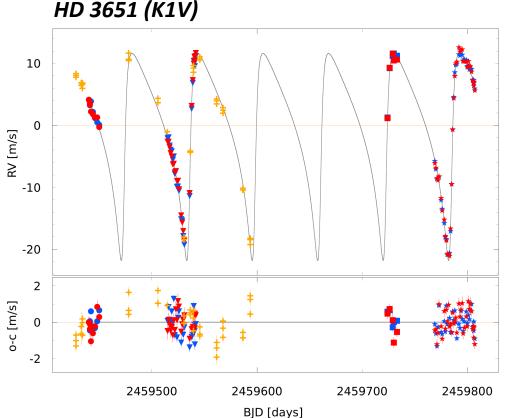
Planet consistent with an Earth-like core mass fraction to high precision


Trifonov+ 2021, Science Caballero+ 2022, A&A

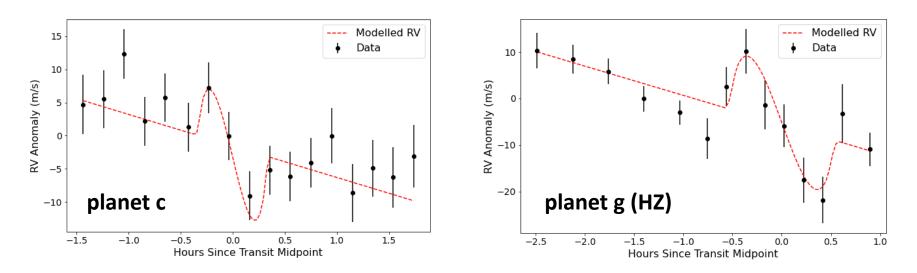
Short-term performance is excellent

Radial velocity follow up of transiting planets

- All TESS M dwarfs within 30 pc and observable from Mauna Kea
- Requirement: relative mass errors to at least 10%, goal is 5%
- Objectives: statistical constraints on the mass-radius relationship and mass function for M dwarf planets; detection of additional planets; enabling JWST atmospheric characterization


Short-term performance is excellent

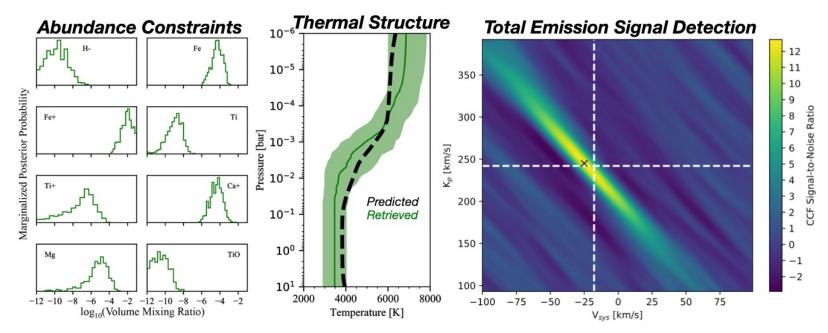
MAROON-X calibration strategy tying together etalon, ThAr and lodine.


Results when fitting the orbit with NEID and MAROON-X data:

NEID (2021):0.86 m/sMAROON-X blue (2021): 0.63 m/sMAROON-X blue (2022): 0.56 m/sMAROON-X red (2021):0.38 m/sMAROON-X red (2022):0.64 m/s

Run-to-run offset uncertainty of ~0.5-1.0 m/s will persist until the installation of a Laser Frequency Comb

Spin-orbit alignment of the TRAPPIST-1 planets



Brady+ ApJ accepted

- Preliminary results constrain $\lambda = 0^{\circ} \pm 10^{\circ}$
- Challenging observations due to the m_V =18.8 mag host star, short (~1 hour) transit durations, and 5-10 m/s signal
- Red arm data only, no signal in the blue arm

Atmospheric characterization at high resolution

KELT-9b (Kasper+ 2021)

