

Recent Advances in Established Starlight Suppression Technologies

Bertrand Mennesson Jet Propulsion Laboratory, California Institute of Technology

© 2023 California Institute of Technology, government sponsorship acknowledged. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. CL#23 0197

Starlight Suppression Technologies for HWO Flagship Seattle AAS meeting Splinter Session January 10, 2023

Image credit: Mark Garlick,

- HWO Starlight Suppression MUSTs
- Coronagraphs Latest Performance in the Lab (plain & segmented apertures)
- Promises and Current Limitations of Coronagraphs
- Near Term Priorities for Improving Coronagraph Technical Readiness

- Starshade Latest Performance in the Lab
- Promises and Current Limitations of Starshades
- Near Term Priorities for Improving Starshade Technical Readiness

HWO Starlight Suppression System MUSTs

Detailed requirements yet to be derived. But from previous studies and Astro2020 language:

- Must reach a minimum point source detection limit ∆mag > 25 at < 70 mas from FGK stars
 - That is 2.1 λ /D for λ =950 nm and D= 6m (4 λ /D at 500nm)
 - Requires raw contrast of a few 10⁻¹⁰ there, with "high" throughput, high stability and a bandwidth >~ 20%.
- Must spectrally characterize detected exo-Earth candidates over a broad spectral range to
 - Search for Rayleigh scattering, water vapor and oxygen --> 450-950 nm
 - Search for low levels of oxygen via $O_3 \rightarrow down$ to 300 nm
 - Search for methane and carbon dioxide \rightarrow up to 1800 nm

Coronagraphs Current Lab Performance: unobscured aperture

Unobscured circular pupil with simple Lyot Coronagraph in vacuum:

4 x 10¹⁰ contrast (1 polar), JPL HCIT Team – Decadal Survey Testbed (DST)

- Over 10% BW, averaging from 3-10 λ/D, 360° DH (Seo, B.J. et al SPIE 2019)
- Over 20% BW, from 5.5-13 λ /D, one-sided DH

Smaller IWA, higher throughput and resilience to aberrations Unobscured circular pupil with Vector Vortex (VVC6) Coronagraph in vacuum:

JPL HCIT Team DST (Ruane, G. et al. SPIE 2022):

- 5.9 x 10 ⁹ contrast over 20% BW, averaging from 3-8 λ/D, one-sided DH, 1 polar
- 1.6 x 10⁹ contrast over 10% BW, averaging from 3-8 λ/D, one-sided DH, 1 polar

-4

Coronagraphs Current Lab Performance: obscured apertures

-axis to

on axis

In air to

vacuur

Segmented Pupil: 37 hexagons, no central obscuration Phase Apodized Pupil Lyot Coronagraph (PAPLC) <u>in air</u>:

STScI HiCAT Testbed (Soummer et al. SPIE 2022, Por, E.H. et al. ApJ 2020):

- 2 x 10 $^{\rm 8}$ monochromatic contrast averaging from 2-13 $\lambda/D,$ one-sided DH, unpolarized light

Segmented Pupil: 120 hexagons, central obscuration and spiders - Phase Induced Apodization Complex Mask <u>Coronagraph (PIAACMC) in vacuum</u>:

JPL HCIT Testbed (Belikov, Sirbu, Marx et al. 2021):

1.8 x 10 ⁸ monochromatic contrast averaging from 3.5-8 λ /D, one-sided DH, polarized light

Coronagraph Current Performance in the Lab (vs 2020)

Coronagraph Type	Classical Lyot	Vector Vortex charge 6	Phase Apodized Pupil Lyot Coronagraph	Phase Induced Amplitude Apodization Coronagraph
Aperture Type	Circular unobscured (= off-axis Monolith)		Off-axis Segmented	Circular on-axis segmented
Deformable Mirrors	2 AOX (each 48 x 48)	2 AOX (each 48 x 48)	2 BMC MEMs (each 952 actus)	1 BMC MEMs (952 actus)
Separation Range	5-13.5 λ/D (vs 3-10 l/D)	3-8 λ/D	2 – 13 λ/D	3.5 – 8 λ/D
Dark Hole Azimuthal Extent (deg)	180 (vs 360)	180	180	180
Mean Raw Contrast over Sep. Range	4 x 10 ⁻¹⁰ (idem)	5.9 x 10 ⁻⁹ (10 ⁻⁸)	2 x 10 ⁻⁸	1.8 x 10 ⁻⁸
Central wavelength (nm)	550	635	638	650
Spectral bandwidth	20% (10%)	20% (10%)	Monochromatic	10%
Number of polarizations	1	1	2	1
Off-axis Throughput	medium	high	high	high
Sensitivity to low order aberrations	medium	low	medium	medium
Facility	JPL HCIT Testbed	JPL HCIT Testbed	STScI HiCAT Testbed	JPL HCIT Testbed
Vacuum Operation	Υ	Υ	Ν	Y

Currently demonstrated static contrast performance degrades when moving toward coronagraphs with higher throughput and lower sensitivity to aberrations, moving from monolithic to segmented apertures, and from off-axis to on-axis

Promises and Current Limitations of Coronagraphs

Coronagraphs well known to astronomers

- At virtually all large ground based vis/IR telescopes
- Flying on Webb (~10 ⁵ detection limits at few λ /D in the MIR)
- To be demonstrated in space at high contrast (a few 10⁻⁹ to 10⁻⁷) on Complex Aperture with Roman in ~2027
 - Active WFSC with large DMs
 - Ultra low-noise photon counting detectors
- Nimble pointing → well suited to blind exoplanet searched

However:

- Combination of contrast, bandwidth and IWA not yet demonstrated
 - Current best performance is $4x10^{10}$ at > $3\lambda/D$ (10% BW) or > $5\lambda/D$ (20% BW) with Lyot Coronagraph on clear aperture
- Current best performance significantly worse when switching to:
 - Coronagraph with smaller IWA, higher throughput and better resilience to low-order aberrations (e.g. VVC6)
 - Segmented aperture (e.g. PAPLC)
- Places stringent requirements on telescope wavefront stability, sensing and correction
- Requires seq. observations or parallel coronagraph channels to cover large spectral BW (and both polars)
- Coronagraphs may not be suited to high contrast observations in the UV (throughput and contrast issues)

Benefits and Challenges of UV Coronagraphy

"The most sensitive indicator of atmospheric O₂ is the UV O₂ (Hartley-Huggins) band, which would have created a measurable impact on Earth's spectrum for ~50% of its history to date, versus ~10% for O2". *Schwieterman, E. et al. 2019*

However

- Planets are much fainter in the UV!
- UV Throughput is low! V reflectivity per surface is no better than 92% (for bare AI) and coronagraphs need many optics (15 on CGI)
- WFC reqts scale as λ
- Birefringence is generally higher in the UV, inducing incoherent "polarization aberrations"

Near Term Priorities for Improving Coronagraphs Technical Readiness toward HWO ... and Informing Upcoming Trades

- Push in-vacuum static contrast tests of simple Lyot coronagraphs on clear apertures to
 - Characterize and improve testbed environment ultimate limits using the simplest possible case
- Push in-vacuum **static** contrast tests of more advanced coronagraphs (smaller IWA, better throughput and resilience to aberrations) on:
 - Clear apertures
 - Segmented apertures
- Push in-vacuum dynamic contrast tests in the presence of induced perturbations
 - Without correction: Validate theoretical dependence to aberrations for different coronagraphs
 - With correction: test various WFSC systems to be used for dark hole optimization and maintenance
- Conduct optical simulations of static coronagraphic performance and expected yield in the UV, folding in:
 - End-to-end throughput from realistic UV coronagraph beam train
 - Contrast performance in the presence of polarization cross-talk effects

Starshades Current Performance in the Lab

Overall "Starshade to TRL5" (S5) plan for closing technology gaps and S5 Milestone reports accessible at <u>https://exoplanets.nasa.gov/exep/technology/starshade/</u>

Starshades Current Performance in the Lab

Princeton Starshade testbed demonstrated 10¹⁰ broad-band contrast (12%BW) at a flight-like Fresnel Number (F=13)

11

Starshades Current Performance in the Lab

Princeton Starshade testbed (S5 Milestone 1B) demonstrated ~2x10¹⁰ contrast over a 12% BW (640 to 725 nm) at an IWA of 1.7λ_{max}/D, using 1 polar (96% polarized source) and a flight-like Fresnel Number (F=13)

- Observed ~2x 10¹⁰ raw contrast at tip IWA and optical model residual error limited by non-scalar diffraction (thick screen) effects where polarized light interacts with the edges of the 50 mm starshade mask.
- Such effects are completely negligible (> 1000x lower) on a > 10m diameter flight starshade.
- Performance at larger angles is limited by Rayleigh scattering by air molecules to ~10¹¹ contrast
- Validated Contrast performance vectorial optical model to better than a factor of 2 for petal position error and 1.25 for petal shape errors (S5 Milestone 2, Harness, Kasdin & Galvin 2022)

Promises and Current Limitations of Starshades

- Broad instantaneous spectral bandwidth (~100%) and small inner working angle (<2 λ /D) accessible
 - 10 10 contrast readily demonstrated in the lab at 2 λ/D over 12% BW
- High throughput
- Dual polarization operation
- 100x looser requirements on wavefront correction and stability than coronagraphs; no DMs required
- Large outer working angle (no DMs)
- Possible operation in the UV

However

- Not used for astronomical observations
- Ultra broad-band capabilities not yet demonstrated in the lab
- Can't be tested at scale from the ground
- No in space demonstration currently planned
- Limited blind search capabilities, unless refueled

Near Term Priorities for Improving Starshades Technical Readiness toward HWO

Given potential capabilities (IWA, BW, throughput) and spectacular lab results:

- Keep starshades in HWO starlight suppression toolbox
 - Major performance enhancer for coronagraphs, esp. for UV obs and NIR spectroscopy
- Complete TRL5 mechanical MS demonstrations
 - Currently expected by mid-FY 24

• Further technology maturation toward TRL6 through competed (SAT) or directed work

- Update requirements for larger starshades (~56m) compatible with HWO
- Full-scale petal development (manufacturing accuracy and thermal stability)
- Explore a possible small space tech demo to demonstrate:
 - Starshalle operations and high contrast broad-band observations of bright stars
 - E.g. 10^{-10} contrast at $2\lambda/D$ over > 50% instantaneous bandwidth
 - Possibly in the UV

Back-up

Promises and Current Limitations of Coronagraphs

Coronagraphs are now well known to astronomers

- Widely used at virtually all large ground based vis/IR telescope
- Flying on Webb (~10⁻⁵ detection limits at few λ /D in the MI
- Soon to be demonstrated in space at high contrast (between a few 10⁻⁹ and 10⁻⁷) with the Roman coronagraph visible instrument, including
 - Active wavefront sensing and control with large DMs
 - Ultra low-noise photon counting detectors
- Nimble pointing \rightarrow well suited to blind searches targeting 100+ stars with multiple revisits

However:

- Required combination of raw contrast, spectral bandwidth and IWA not yet demonstrated
 - Current best performance is 4x10⁻¹⁰ at > 3λ/D (10% BW) or > 5λ/D (20% BW) with simple Lyot Coronagraph using a clear circular aperture (no segmentation or central obscuration)
- Current best performance significantly worsens (> x 10) when switching to:
 - Coronagraph with smaller IWA, better throughput and better resilience to low-order aberrations (e.g. VVC6)
 - Segmented aperture (e.g. PAPLC)
- Places stringent requirements on telescope wavefront stability, sensing and correction
- Will require sequential observations or parallel coronagraph channels to cover large spectral bandwidth (and likely to observe in orthogonal polarizations)
- Coronagraphs may not be suited to high contrast observations in the UV (throughput and contrast issues)

Coronagraph Current Best Performance in the Lab - Unobscured circular aperture

2019:

- 10% bandwidth
- 360 deg dark hole
- 4×10⁻¹⁰ mean contrast
- between 3 and 9 λ/D
- with classical Lyot Coronagraph (or HLC?)

NASA-JPL HCIT Decadal Survey Testbed (DST) Single-polarization Results: Seo, B. et al. 2019

Coronagraph Current Best Performance in the Lab - Unobscured circular aperture

2022: improved spectral bandwidth

- 20% bandwidth
- 180 deg dark hole
- 4×10⁻¹⁰ mean contrast
- between 5 and 13.5 λ /D
- with classical Lyot Coronagraph
 2.7 λ/D spot radius with aggressive Lyot Stop (0.28-0.675 D)

	Mean Raw NI	3.97E-10	
	λ₀	560 nm	
	Bandwidth	20%	
	Scoring Zone	5-13.5λ ₀ /D	
	DMs	2x AOX 2k	
1	Single Polarization		

NASA-JPL HCIT Team Decadal Survey Testbed (DST) Single-polarization Results

Initial emphasis on demonstrating broader bandwidth. Will now push toward reaching smaller separations

Wide-band contrast on the Decadal Survey Testbed (cont.)

Each of these milestones is a <u>conclusion</u> of a previous activity. We are repeating design/fabrication/analysis for a higher-fidelity full-featured version of a component that has already been demonstrated with critical features.