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Statement of the problem
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We can design
coronagraph masks that
will make these images.

How do we keep the
optics stable enough so
the contrast does not
change during science
exposures?

Juanola-Parramon et al. (2019)



Methods



Why wavefront control/maintenance?
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Shorten the time scales of wavefront drifts from a science
exposure time (~10 hours) to a wavefront sensing exposure
time (minutes, seconds, milliseconds?).



Zeroth order analysis of gain associated with WF Maintenance

Maintenance Gain = Sensor efficiency / (raw contrast * coronagraph

log[requirements (pm/min)]
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Coronagraphs robust at the segment level: Leboulleux et al. (2022)
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Global misalignments, Polishing,
beam walk

Secondary motion

Segment misalignments,
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Towards a more sophisticated
approach

- we assume that the instrument
Wavefront Sensing and Control
can reject some of the
observatory disturbances.

- what is left has to be corrected
actively or passively at the
observatory level.

This talk: what is required from
observatory if we have WFS&C ?



Towards a more sophisticated approach Titter Residual
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Towards a more sophisticated approach Titter Residual
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The long form version

PASTIS

@ We pick an open loop wavefront variance. @ For any basis set for €, the contrast change
@ We d q front Integrated over the Dark Hole is given by:
e draw a random wavefront.
_ T

© We use a diffractive linear optical model of the WFS to simulate sensing images aE =g (GG Q) (8)
as a function of wavefront. @ We build G numerically by poking each

@ Assuming that there exists an unbiased estimator for this given WFS, we use the mode in the basis set.

Fischer information matrix as a proxy for the SNR in these sensing images @ We pick AC=10"1

(changes with detector noise, exposure time, stellar magnitude). ~ We fivart e, 8 eesuiing Hhe medes s
©@ Assuming that there exists a perfect control algorithm, we use the Cramer Rao uncorrelated to derive the open loop

bound to convert sensing SNR into wavefront variance associated with variance Q y,

measurement uncertainty.

@ We use two version of the Cramer Rao bound: one that only used the last WFS
measurement (batch), and one that takes into account the full WFS history yy 4Nist, &7 (6o ) (GevrE) 6 @
(recursive). et v Frngn, VT R

@ Closed loop wavefront variance = open loop wavefront variance + WFS
measurement uncertainty

Q@ We use a diffractive linear optical model of the coronagraph to convert closed ° \e/l’t*;fn”a:;‘;‘gtﬁesuf'vzf‘a’)its;gféztggstm
IOOp wavefront variance into contrast. - covariance’cannot be smaller than the

_ _ inverse of the Fischer information:
© We go back to step 2 but this time draw a random wavefront from the closed

| . P> (Fhi1) (4)
OOp Vvariance. @ When WFS history (recursive estimator),

@ We Iterate. the difference in wavefront estimation

covariance cannot be smaller than the
inverse of the Fischer information:
Laginja et al. (2020), https.//arxiv.org/abs/2103.06288
Pogorelyuk et al. (2021), https://arxiv.org/abs/2108.03269 ’

Pri1 > (fk+1 + (P + Q)_l)l (5)
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Example of trades



Trade 1: LOWFS or focal plane maintenance with LUVOIR A

Relative Contribution of each
mode.

LO modes rms
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Trade 1: LOWFS or focal plane maintenance with LUVOIR A

Relative Contribution of each
mode.

LO modes rms
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Trade 2: MIDWEFS or focal plane maintenance for segment level errors

MID modes, 5 mag star
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Trade 3: Representation of segment level errors
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We find that thermal drifts requirements are of ~5 mK over

timescales of 10s of seconds to minutes



Trade 4: OBWFS maintenance for segment pistons with LUVOIR A,
changing sensing algorithm : MID modes, 5 mag star
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Recursive sensing and predictive control
10 milli-seconds exposure enable shorter exposure time on fainter stars.



Trade 4: OBWFS maintenance for segment pistons with LUVOIR A,
changing sensing algorithm

Relative Contribution of each MID modes, 10 mag star
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Trade 5: Influence of detector noise
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Trade 5: Influence of detector noise
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Trade 6: Changing the coronagraph and telescope

Relative Contribution of each
mode.
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Trade 7: Looking at vibrations (short time scales)

When vibrating, segments are not independent
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* This means that we can use the full
telescope for sensing, not just each
segment.

* Depending on their morphology,
correlated structures at primary leak
more or less through the coronagraph
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Conclusion: we are not breaking any laws of physics ....

I Vel |+

Coronagraph masks

Telescope architecture

Sensing and control architecture

< Open loop requirements | ¢———w—"

.... but we need to optimize a complex system



