

Moderate Resolution Spectroscopy of Directly Imaged Planets

Dr. Kielan K. W. Hoch

ExoPAG 27

Core Accretion Scenario

The metallicity of planets should be enhanced

Gravitational Instability

• The metal content should be roughly the same as the host star

Öberg et al. (2011)

C/O Ratios

- If the *atmosphere* of a giant planet is *accreted after* the formation of a solid core enhanced C/O ratio relative to the host star
- If the planet forms through gravitational collapse the separation of solids and gases is irrelevant and the C/O ratio should be similar to the host star

(*Piso et al. 2016*) C/O ratio estimates in gas (solid lines) and dust (dashed lines) as function of semimajor axis in a viscous disk, for CO as pure ice (top panel) or as water-dominated ices (bottom panel).

Imaging Spectroscopy Survey of Exoplanetary Atmospheres with Keck/OSIRIS

Carson et al. 2013

Jason Wang

Gauza et al. 2015

Bonavita et al. 2014

Chi Squared CO and H₂O Mole Fractions

 $C/O = 0.704^{+0.09}_{-0.24}$

C/O Ratios For Current Directly Imaged Planets

- Recent works on what could impact C/O:
 - The grain size distribution (Piso et al. 2015)
 - Migration of grains/pebbles (Booth et al. 2017)
 - Migration of planets (Cridland et al. 2020)
 - Accreted material from the midplane (Morbidelli et al. 2014; Batygin 2018)

Planet	C/O	Reference	Host C/O
Kappa And b	0.704	Wilcomb et al. 2020	No
VHS 1256 b	0.590	Hoch et al. 2022	No
HD 284149	0.737	Hoch et al. submitted	No
HR 8799 b	0.578	Ruffio et al. 2021	0.5
HR 8799 c	0.562	Ruffio et al. 2021	0.5
HR 8799 d	0.551	Ruffio et al. 2021	0.5
HR 8799 e	0.60	Molliere et al. 2020	0.5
HIP 65426 b	≤0.55	Petrus et al. 2021	No
TYC 8998-760-1 b (YSES-1 b)	0.52	Zhang et al. 2021	No
AB Pic b	0.58	Palma-Bifani et al. 2022	No

Some Transit planets have derived C/O ratios

Changeat et al. 2022

Comparisons of C/O ratios against system parameters

Possible trend between C/O and Companion Mass

Hoch et al. submitted

Metallicity could also tell us about formation

Santos et al. 2017

Ground-based Observations can only go so far...

Characterization of the TYC 8998-760-1 (YSES-1) Multi-Planetary System

Bohn et al. 2020

Contrast at 5.0 µm

Contrast at 3.5 µm

Expected Spectral Return

Moderate Resolution Spectroscopy: Detailed

Chemistry

- Critical regime for diagnosing non-equilibrium chemistry between CO and CH4
- Vertical mixing (parametrized by Kzz), can displace methane from the photosphere with warmer, CO-dominated gas
- Constrained Kzz will allow for accurate measurement of C/O

Low-resolution spectroscopy: temperature, gravity, clouds, and more

Models of TYC 8998 c: Low-resolution models varying in surface gravity and cloud properties

Summary

- Imaging Spectroscopy Survey of Exoplanetary Atmospheres with Keck/OSIRIS: measured C/O ratios of 6 of the 10 directly imaged planets with C/O ratios
- C/O ratios of host stars are needed for the full diagnostic
- C/O ratio may not tell us as much as previously hoped about formation
- C/O ratio and metallicity could reveal two distinct populations of exoplanets that could be coupled with how they formed
- JWST/space based observatories and future ground-based observatories will further constrain these measurements

JWST opens up spectroscopy beyond 3 microns

Miles et. al 2022