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1 Introduction 
 
This report details the methods, results, and conclusions derived from participating in the 
Starshade Exoplanet Data Challenge. The goals of the data challenge require solutions to 
multiple subproblems, where each subproblem is interesting and challenging in its own right. 
For some of the harder subproblems, multiple methods were explored, where some were fully 
implemented, some partially implemented and some considered in detail but not implemented. 
This report aims to explain the learnings derived from these various attempts and to make 
recommendations for future work. The report will also attempt answer some of the original 
questions posed by the data challenge, but with the caveat that the obtained results are likely 
far from optimal, and better results are likely possible given more time and effort. While the 
results may help inform requirement flow down in regards to instrument calibration and noise 
limits, it is likely that the present results are overly pessimistic relative to what is possible with 
more time, more training and test data, and more clever approaches. This report intends to be 
a useful contribution for informing future work while also addressing some of goals set out for 
the data challenge. 

2 Methods  
 
A majority of the time for this effort was spent on developing approaches for analyzing the data 
in the Release #2 data: Broadband Imaging Simulations for Starshade Rendezvous. This data 
release consists of 1440 simulated images, representing various imaging scenarios. In general a 
given simulated image includes some relatively faint signal from an exoplanet, in additional to 
simulated background signal from various noise sources: residual starlight, solar glint and other 
stray light sources, exozodiacal light, detector noise, and variability resulting from the 
starshade’s motion and telescope jitter.  
 
While it is possible to formulate the image analysis problem different ways, for the purposes of 
this report, the approach is broken into three sub-problems: 
 

1. Background Estimation  
2. Planet Detection 
3. Planet Parameter Estimation  

 
A majority of the effort was spent on the background estimation and removal sub-problem 
which proved to be the most challenging, and the most critical limiting factor for the ultimate 
accuracy of detection and estimation results. 
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2.1 Background Estimation 
 
The background estimation problem proved to be the most challenging subproblem, and 
significant time was spent trying different approaches. The approaches are divided into two 
general categories: parametric and non-parametric.  
 
The parametric approach attempts to explicitly model the backgrounds, find best fit 
parameters, and then subtract the best fit background model. The non-parametric category 
includes approaches which do not use an explicit astrophysical or otherwise explicit 
mathematical model of observed backgrounds, and instead attempt to exploit underlying 
differences in the behavior of planet signals vs background signals when considering a large 
training set. Specifically, three non-parametric approaches were explored: PCA, ICA, and an 
Autoencoder. These three approaches all attempt to find a low-dimensional latent 
representation of the background signals.  
 

2.1.1 Parametric Background Estimation 
After inspecting the Release 1 data, which only contained smooth and radially symmetric 
exozodi, it seemed appropriate to construct a simple parametric model that would be suitable 
for nonlinear parameter estimation. The idea is to construct a model which produces a 
background image I𝑏 given some parameter vector 𝑝:   
 

I𝑝 =  𝑓(𝑝) 

 
Once such a model has been designed, background estimation can be performed via nonlinear 
optimization to find the parameters 𝑝 which best explain the background observed in a given 
image, according to some cost function 𝐶: 
 

�̂� = arg𝑝min 𝐶(I ,  𝑓(𝑝)) 

 
Because 𝐶(I ,  𝑓(𝑝)) must be minimized with a nonlinear optimizer, ideally 𝑓(𝑝) can be 
designed such that 𝐶(I ,  𝑓(𝑝)), will have the following properties: 
 

• Is fast to compute for a given 𝑝 

• Has stable numerical derivatives 

• Represents a convex and well-conditioned cost function. 
 
As model complexity increases, the difficulty of solving the optimization problem is also 
expected to increase. Therefore, it is reasonable to start with a simple model, and add 
increasing astrophysical fidelity incrementally to find an appropriate level of model complexity 
that is still workable in a nonlinear parameter estimation context.  
 
Following this reasoning, the initial model developed for this purpose consisted of an 
assumption of an exozodiacal disk which is circular, with some 1D function describing a radially 



 3 

symmetric intensity profile. Parameters for inclination and orientation relative to the imaging 
system are also included. This can be considered an ‘empirical model’ in the sense that it is not 
derived from astrophysical principles, and is instead intuited from inspection of the image data 
without any astrophysical reasoning. The model has the following parameters: 
 

• Center position 𝑥𝑐, 𝑦𝑐 (pixels) 

• Inclination and Orientation 𝑖, 𝜃 (deg) 

• 1D function for symmetric intensity roll-off: 

o 𝑓(𝑟) =  𝑠𝑒(𝑎𝑟2+𝑏𝑟+𝑐), where: 
▪ r is radial distance from the center 
▪ 𝑠 is an intensity scale factor 
▪ a,b, and c are polynomial coefficients 

 
This gives a total of 8 parameters, denoted by parameter vector 𝒑: 
 

𝒑 = [ 𝑥𝑐 , 𝑦𝑐, 𝑖, 𝜃, 𝑠, 𝑎, 𝑏, 𝑐] 
 
Although this model is not derived from astrophysical principles, it has some physical 
interpretability in the sense that 𝑥𝑐 , 𝑦𝑐 represent estimated disk center, while 𝑖, 𝜃 represent disk 
inclination and orientation, under the rough assumption of an infinitely thin disk with perfect 
radial symmetry. The 1D intensity roll-off function is any arbitrary function which can explain 
the observed roll-off. A decaying exponential with a second order polynomial in the exponent 
was selected for this purpose after some “guess and check” experimentation. 
 
With an initial model selection, the next step is to define the cost function 𝐶(I𝑜 , I𝑝). A typical 

approach would be to simply compute the sum of squared error:  
 

𝐶(I𝑜 , I𝑝) = ‖I𝑜 − I𝑝‖
2

2
 

 
However, consider that the model only attempts to be a first order model of smooth exozodi, 
and that various unmodelled effects will be present in the image: planet signals, solar glint, 
starshade transmission, resonant structures, etc. Given that we expect large amounts of 
unmodelled signal, a robust regression approach should be used. An assumption is made that 
these unmodelled effects will be somewhat local to particular pixels in the image, whereas the 
exozodi, being the broadest structure in the image, will have a certain number of pixels which 
are in fact well explained by the model, and some pixels which are not well explained by the 
model. If this general assumption is true, then the problem of unmodeled effects in the image 
can be thought of as an outlier rejection problem. I.e. many pixels in the image will fit the 
exozodi model, whereas many pixels will also be significantly affected by other unmodelled 
affects. In order to address this outlier problem, the following cost function is used: 
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𝐶(I ,  𝑓(𝑝)) = ∑ 𝐿(𝑓(𝑝)𝑖 − 𝐼𝑖)

𝑁

𝑖=1

𝑤𝑖 

Where: 
 

• 𝑤𝑖 represents a per-pixel weighting 

• 𝐿 is a modified Huber Loss function 
 
The per-pixel weighting is used to down-weight pixels that are not expected to fit the model. 
For example, pixels within a defined radius of the starshade are weighted as zero since a 
combination of transmission effects and solar glint effects are expected to always cause poor 
model fit in that region. The selected loss function 𝐿 is similar to the Huber loss, except that for 
the region of the loss above the threshold, a logarithmic loss is used instead of a linear loss. This 
provides a compromise between the Biweight loss which plateaus at a maximum loss vs Huber 
loss which continues to grow linearly. 
 
This approach gave reasonable success for smooth disk scenarios. As shown in figure 1, for a 
smooth disk scenario, the simple disk model and regression approach can yield fairly ideal 
background subtraction where the residual consists of planet signal plus sensor noise. Note that 
for this example image content within a radius of 3 pixels from the starshade center is ignored.  
A less ideal result is shown in Figure 2, where there is more obvious residual due to model 
error. It has been proposed that this significant model error found with smooth disk data may 
be due to some combination of forward scattering and inherent thickness of the disk. Even 
though the SISTER simulation uses a smooth disk model, it also implements forward scattering, 
and models non-zero thickness of the disk even when imaged at high inclination angles[1]. 
Therefore, it can be expected that this simple estimator as implemented will still have some 
significant model error at higher inclination angles. 
 
It is worth noting that this simple model and estimation technique was developed for release 1 
data, which contained only smooth exozodi images. Once the resonant structures were 
observed in the release 2 data, it became clear that the initial model would be limited for that 
scenario. Some results for resonant disks are shown in Figures 3 and 4. The resonant disks show 
some degree of radial symmetry, so it may be possible to improve the fit of the original model 
by updating the arbitrary 1D intensity function.  
 
However, with the growing complexity of the scene, the best use of time would be developing a 
model with some more astrophysical fidelity, especially since these effects have already been 
studied and modeled in SISTER.[1] Using the models from SISTER would present a dilemma 
because while the results of solving an estimation problem would be interesting, the results 
would be overly optimistic when using the same model for estimation as is used in the 
simulation. In the real world, we expect more unmodelled effects, i.e. we never expect to have 
a perfect model. So while using the models in SISTER to solve estimation problems for images 
generated by SISTER may represent non-trivial estimation problem it would not necessarily 
serve the goals of the data challenge. However, it would be reasonable to demonstrate some 
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degree of robustness to unmodelled effects by turning of or changing some effects in the test 
set such that the models used for testing do not exactly match the models used for estimation. 
Another tool which was explored for possible conversion into an implementation for 𝑓(𝑝) is the 
ZODIPIC package developed by Marc Kuchner.[2] The tool was downloaded and run successfully 
in IDL but was not pursued further.  
 
Developing an 𝑓(𝑝) with both sufficient fidelity to capture all the background effects, and also 
the right properties for an inverse estimation problem seemed like too large of an effort to 
complete within the scope of this project, but would be of great interest for future work.  
 
A decision was made to switch focus to non-parametric background estimation approaches, 
since there is reason to believe the data can be decomposed into background and foreground 
components due to underlying differences in their behavior across a large dataset.  
 

 
Figure 1: Example background subtraction results using a simple symmetric disk model with robust regression. 
From left to right: a. the observed image for R05_v1_sez2_snr2_0425_0552_nm_r1, b. The estimated disk model, c. 
the residual.  

 

 
Figure 2 Example background subtraction results using a simple symmetric disk model with robust regression. From 
left to right: a. the observed image for R04_v1_sez2_snr2_0425_0552_nm_r1, b. The estimated disk model, c. the 
residual. In this case the residual contains more obvious model error which is greater in magnitude than the planet 
signal to the bottom right. 
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Figure 3 Example background subtraction results using a simple symmetric disk model with robust regression. From 
left to right: a. the observed image for R05_v2_rez2_snr3_0425_0552_nm_r2, b. The estimated disk model, c. the 
residual. In this case the residual contains some significant model error due to resonant structures. This residual 
becomes dominant when the relative magnitude of the exozodi is greater. 

  

Figure 4: Example background subtraction results using a simple symmetric disk model with robust regression. 
From left to right: a. the observed image for R05_v2_rez3_snr3_0425_0552_nm_r2, b. The estimated disk model, c. 
the residual. This shows the same scenario as Figure 4, but with exozodi intensity level 3. In this case the residual 
due to model error is on the order of planet signal. 

2.1.2 Non-Parametric Background Estimation 
 
There are a few reasons to believe that planet signal can be separated from background signal 
without an explicit background model: 
 

1. Planets move between multi-epoch observations, whereas backgrounds do not. 
2. The shape and scale of the disk structure in the image changes significantly as a function 

of wavelength, whereas planet positions do not. This is relevant when combining images 
from the same observation into a multi-channel image considered as a single sample. 

3. Disk structures have underlying similarity between different scenarios and dominate the 
signal energy. 

4. Planet signals are point sources with low signal energy, appearing in non-repeatable 
positions. 
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A general idea which may exploit these underlying effects to separate planets from background 
is to use dimensionality reduction techniques to find a latent model which models backgrounds 
but not planets. A summary of the idea is that a low dimensionality latent model will have a 
denoising effect, where planet signal can be thought of as a noise signal on top of the broad 
background structure. Three approaches were explored: PCA, ICA, and an Autoencoder. 
 
For all three approaches, the image data is collected into a matrix 𝐗, where the rows represent 
samples, and the columns represent variables, which in this case are the image pixels flattened 
into a row. The data matrix 𝐗 is prepared as follows: 
 

1. Each pair of 425-522nm and 615-800nm images taken in the same visit number for the 
same scenario are consider a single two-channel image representing a single 
observation. 

2. The subset of images with exozodi intensity levels 2 or 3 are selected to reduce 
modelling of planet signal. 

3. A 41 x 41 pixel ROI is imposed on each image to further reduce the starting number of 
pixels and focus on the interesting region of the scene. This reduces the number of 
variables in a row of 𝐗 by 60%.  

4. Each 41 x 41 x 2 image is duplicated with a combination of flips and rotations. (data 
augmentation) 

5. Each two-channel 41 x 41 pixel has its channels concatenated, and then the image is 
flattened to a 3362-element row. The rows are combined to form data matrix 𝐗. 

 
Given this 𝐗, the general idea is to find some transform 𝐓 which can be applied to latent scores 

𝐒 to construct �̂� such that some measure of the error between 𝐗 and �̂� is minimized. The 
scores in 𝐒 represent the reduced dimensionality representation of 𝐗. Rows of 𝐗 are observed 
samples in the input space 𝐑N,  and rows of 𝐒 are those same samples represented in the latent 
space 𝐑M, where M < N. In this case N = 3362, and the dimensionality of the latent space M 
must be tuned per model. 
 
While each of these methods are complicated areas of study in their own right, 
the three approaches can generally be thought of in these terms with different levels of 
generality on the transform 𝐓: 
 
PCA: Principal Component Analysis 

 �̂� = 𝐓𝐒, 𝐓′𝐓 =  𝐈 (𝐓 is orthonormal) 
Note: It is also required that the rows of 𝐓, which represent the “principal axes”, must be in 
order of greatest variance of 𝐗 to least variance explained.[3] 
 
ICA: Independent Component Analysis 

 �̂� = 𝐓𝐒 (𝐓 is a linear transform, but not constrained to be orthonormal)[3] 
 
Autoencoder 

�̂� = 𝐓(𝐒) (𝐓 is a nonlinear decoder function implemented by a neural network)[4] 
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In all cases 𝐒 represents the samples of 𝐗 transformed into latent space, where the transform 𝐓 
reconstructs samples from the latent space to original feature space represented by 𝐗. In this 
case 𝐓 transforms row vectors in the latent representation 𝐒 back into the 3362-dimensional 
pixel space.  
 
Once a model is obtained, the process of obtaining a background estimate for a given observed 
image 𝐈𝐨 is as follows: 
 

1. Flatten the image 𝐈𝐨 to a row vector 𝒙 in the input pixel space 𝐑N. 
2. Use 𝐓 to project 𝒙 onto the latent space 𝐑M, producing score vector 𝒔 
3. Apply 𝐓 to 𝒔 to obtain reconstructed image 𝐈𝒓 
4. Treat 𝐈𝒓 as the background estimate since the model is tuned for backgrounds. 

 
Assuming that the model preferentially represents background signals, 𝐈𝒓 is used as the 
background signal to subtract for the purpose of this data challenge. 
 
Of the three methods discussed, PCA is the oldest, most well-known, and easiest to compute. 
ICA can be considered a generalization of PCA where the orthonormality constraint on T is 
removed.[3] In turn autoencoders can be considered a generalization of ICA where the encoder 
and decoder are implemented by a neural network which can represent an arbitrary nonlinear 
function.[4] Autoencoders are more complicated to work with due to long training times and 
hyperparameter tuning. Due to the higher number of free parameters, more training data is 
required to constrain the model.  
 
All three methods were implemented, and an explanation of results for each method is given in 
the following subsections. It should be noted that the judgement of performance for each 
method is somewhat subjective. Since no ground truth information is available, there is no 
obvious way to directly quantify background subtraction performance. In all cases visual 
inspection and human judgement are used to understand background subtraction 
performance. 
 
PCA Results 
 
Various combinations of data augmentation and preprocessing for generating 𝐗 were 
attempted, and a PCA model was generated for each case. The model that appeared to give 
best results was a 17-component model with mean centering and some degree of data 
augmentation. The components of this model are shown below in figure 5. These components 
may be combined in any linear combination to approximate a given image test sample. The first 
few components have some degree of interpretability: Component 1 represents a typical 
smooth disk shape. (happens to be negated) Component 2 represents a term to impose some 
degree of top to bottom asymmetry. Component 3, introduces some higher order asymmetry. 
The higher order components are rarely interpretable, but in some cases they can appear to 
contain planet signals which is useful to see for diagnostic purposes. 
 



 9 

Using this 17-component model, the background subtraction results achieved with PCA are 
reasonable in some cases, but poor in other cases. While it is difficult to summarize the varied 
performance across the test samples, an example of PCA based background subtraction for one 
particular case is shown in Figure 6. Note the clear planet signals in the residual, but also the 
presence of some model error in the residual. (i.e. structured residual content that is neither 
planet signal nor instrument noise) The general finding with PCA was that as you increase the 
number of principal components used (the dimensionality of 𝐒), at some point above 17 
principal components, the components start to include planet signal. 
 
The performance is limited to some maximum number of principal components before you 
start to lose planet signal along with background signal as you increase the number of principal 
components. At this level there is still a lot of structured error in the residual for certain cases. 
While some further tuning is possible in terms of how 𝐗 is generated and preprocessed, the 
method is generally fairly rigid by definition, so a dramatic improvement in performance is not 
expected with further tuning. 
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Figure 5: PCA model components up to PC # 17. Components are shown as 41x82 images where 
in each image the left 41x41 section corresponds to the [425-0552] nm passpand, and the right 
41x41 section corresponds to the [615-800] nm passband. 
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Figure 6: Example of PCA based background subtraction results for “R05_v2_rez2_snr3_1em10” 
scenario. A 2x3 set of subplots is shown where rows 1,2 correspond to passbands [425-522] and 
[615-800] respectively. Columns 1,2,3 of the plot correspond to: original image, estimated 
background, residual. 

 
ICA Results 
 
After hitting diminishing returns while tuning PCA, a natural next step is to try ICA, which can be 
thought of as a generalization of PCA which removes the orthogonality constraint on 𝐓.  The 
latent representation still uses a linear transform, but any arbitrary image components can be 
found such that taking linear combinations of those components model the content of 𝐗. The 
removal of the orthogonality constraint when going from PCA to ICA makes the practical 
problem of generating a good model more difficult. Whereas a PCA model can be computed in 
closed form with a singular value decomposition, computing ICA components requires an 
iterative optimization approach with more configurations to tune. It is also the case that 
whereas a single PCA model can be used for any number of components, an ICA model must be 
recomputed for each proposed dimensionality of S. A single ICA model was selected after 
computing multiple ICA models with different configurations for: data augmentation, 
preprocessing, and optimization settings. The selection criteria for the model was visual 
inspection since no ground truth is available. The components for the selected model are 
shown in Figure 7. (A 17-component model) Note that in contrast to the PCA model, the 
components are not ordered by percent variance explained. Visual inspection of the model is 
important to rule out the presence of planet like content or measurement noise content. The 
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general heuristic used to arrive at this model was to keep increasing the number of 
components until the model starts to visibly include planet signal or measurement noise signal. 
 
Inspecting the background subtraction results using this model yielded similar results to PCA in 
many cases, but appeared to work better in some of the edge cases where PCA had previously 
performed poorly. Based on visual inspection of several samples, it was concluded that this ICA 
model had somewhat better performance on average. An example result is shown in figure 8. 
This example was selected as a resonant disk example with exozodi intensity level 2. This is 
overall a “medium difficulty” sample in the sense that there are resonant structures, but the 
exozodi intensity relative to planet intensity is only at level 2. It is clear that the ICA model (and 
PCA model as well) does a reasonable job of accounting for the broad resonant structures 
without an explicit model.  
 
The ICA model background subtraction was ultimately selected for moving forward to produce 
results for the data challenge. One further improvement was made, which was to use a robust 
regression with Huber loss to solve for the scores vector s for a given test image. This additional 
tweak adds robustness against outlier pixels such as relative bright planet signals which may 
otherwise bias the background estimate for a particular image. 
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Figure 7: ICA model components for the selected 17 component model. Components are shown as 41x82 images 
where in each image the left 41x41 section corresponds to the [425-0552] nm passpand, and the right 41x41 
section corresponds to the [615-800] nm passband. 
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Figure 8: Example of ICA based background subtraction results for “R05_v2_rez2_snr3_1em10” scenario. A 2x3 set 
of subplots is shown where rows 1,2 correspond to passbands [425-522] and [615-800] respectively. Columns 1,2,3 
of the plot correspond to: original image, estimated background, residual. 

 
Autoencoder Results 
The autoencoder approach is more general than the PCA and ICA approaches, and in theory it 
should be able to find a better latent model, since the PCA and ICA models are special cases of 
the possible models which can be represented by an autoencoder. In practice whether a better 
latent model is found with an autoencoder depends on various factors such as: size of training 
set, network design, hyperparameter tuning, training method, and training time. It should also 
be noted that there are multiple types of autoencoders which could be applied here. In this 
case a variational autoencoder was used. A convolutional autoencoder approach would also be 
of interest for future work.  
 
The increase in generality going from ICA to an autoencoder also increases complexity of the 
implementation and variations that can exist in implementation and parameter tuning. While a 
detailed discussion of autoencoders is outside the scope of this report, a summary of the 
approach is as follows:  a variational autoencoder was used where loss function used in the 
training process includes an 𝐿2 regularization term and a sparsity regularization term. Due to 
the very long training times, tuning of hyperparameters such as training settings and 
dimensionality of the latent space was not feasible. A hidden layer size of 30 was selected, 
which is larger than the dimensionality found for the ICA and PCA approach. The hope is that a 
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larger dimensionality will allow background content to be well explained, but that 
regularization will encourage sparsity of the representation. 
 
Initial Autoencoder results looked poor compared to PCA and ICA. A much better result should 
be possible with further effort, but progress is limited by training time on the order of 24 hours, 
which creates a long iteration loop.  
 

2.1.3 Background Estimation Summary  
 
A simple parametric background model was demonstrated with capability of estimating and 
subtracting backgrounds for simple smooth disks, excluding the center region of the image. This 
parametric model is useful for estimating some physically interpretable parameters such as disk 
orientation and inclination and center in x,y. In order to estimate more complex backgrounds 
including effects like resonant structures and forward scattering, further work is required to 
develop a parametric model which has both astrophysical fidelity and is feasible to use in the 
context of parameter estimation using a nonlinear optimizer. 
 
Three non-parametric background estimation approaches were tried: PCA, ICA and an 
Autoencoder. All three methods attempt to find a low dimensional latent representation which 
is expected to separate background from planet signals by exploiting underlying differences in 
the variance across a large dataset. PCA and ICA gave similar results based on visual inspection 
of many cases, with ICA performing better for some samples that appeared give poor results 
with PCA. 
 
Initial Autoencoder results did not look very good, but it is reasonable to expect that with more 
time and effort background subtraction based on a denoising Autoencoder can ultimately 
outperform PCA and ICA. One caveat to this prediction is that more training data may be 
required to properly constrain the large number of free parameters in the network. Currently 
only 920 training samples are used including data augmentation, which is less than the input 
dimensionality of 3362. Ideally the number of training samples would be greater than the 
number of input dimensions, but this is not necessarily required. 
 
The ICA method is selected as a reasonable placeholder for the background estimation 
problem, in order to move on to other subproblems and address other goals of the data 
challenge. 
 

2.2 Planet Detection  
 
The planet detection step starts with the background subtracted image, which will be denoted 
as If (foreground image). In the current workflow If = Io − Ir , where Io is the observed image, 
and Ir is the image obtained by using the ICA model to project Io onto the latent space, 
followed by reconstruction back into image space. For example, the residual images in Figure 8 
are considered to be foreground images for the purpose of planet detection. 
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The pipeline implemented for the purposes of the data challenge includes the following steps: 
 

1. Matched filtering: The foreground images are filtered with the appropriate PSF as a 
function of wavelength and instrument scenario.  

2. Local maxima detection: local maxima detection is performed on the matched filter 
output to find regions of the image which are well matched to the PSF, indicating 
possible presence of a point source.  

3. Outlier detection: given the distribution of local maxima intensities found in 2. 
univariate outlier detection is performed to detect which local maxima do not match the 
main distribution. The Grubbs test is used to detect local maxima which are outliers in 
terms of matched filter output intensity. 

4. Keep the N most intense positive outlier detections and consider them as planet 
detections. 

 
This detection approach differs from the original proposal to use Bayesian inference for the 
planet detection step. The Bayesian inference approach would have required characterizing 
multivariate probability distributions for 𝑝(𝑣|𝐻1), and 𝑝(𝑣|𝐻2), where 𝑣 is a vector containing 
a feature descriptor plus pixel location, and H1 and H2 are respectively the hypotheses that a 
pixel corresponds to a planet, or does not correspond to a planet. Given that 𝑝(𝑣|𝐻1) and 

𝑝(𝑣|𝐻2) are not known and no obvious method for characterizing them is available, an 
approach requiring far less prior knowledge was implemented. 
 
While the implemented outlier rejection approach does not compute a likelihood ratio, it is 
statistically motivated and some comparison is warranted. The outlier rejection approach 
implicitly characterizes 𝑝(𝑣|𝐻2), the probability of observing feature 𝑣 under the hypothesis 
that a local maximum does not correspond to a planet. The probability 𝑝(𝑣|𝐻2) may also be 
referred to as the probability that the null hypothesis is true. In this case the 𝑣 is the intensity of 
a local maxima in the matched filter output, and only local maxima are considered as opposed 
to all pixels as originally proposed. The implicit characterization of 𝑝(𝑣|𝐻2) is based on the 
histogram of local maxima in a single image. The outlier rejection step finds local maxima which 
have very low probability under the null hypothesis. The selected Grubbs test implementation 
uses an iterative outlier rejection where for each iteration a threshold is selected using the 
Student's t inverse cumulative distribution function. While it is possible to compute the 
probability of the null hypothesis for a given detection, these probability values were not 
computed explicitly. The Grubbs outlier test can be considered as a useful heuristic for setting a 
detection threshold on matched filter output, even if the associated distributional assumptions 
are not rigorously demonstrated. 
 
A visualization of detection results for the “R05_v2_rez2_snr3_1em10” scenario is shown in 
Figure 9. It is apparent in Figure 9 That while the automated detection is successful for two 
planets, imperfect background subtraction is affecting the background level, creating valleys 
with no local maxima. For many images, imperfect background subtraction appears to be a 
limiting factor. Figure 10 shows an example of detection performance when background 
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residual is small. In this scenario it is apparent that the approach performs well for detection 
with low signal to noise ratio when background residuals in the foreground image are low. 
 

 
Figure 9: Example planet detection results for the “R05_v2_rez2_snr3_1em10” scenario. A 2x3 set of subplots is 
shown where rows 1,2 correspond to passbands [425-522] and [615-800] respectively. Columns 1,2,3 of the plot 
correspond to: foreground images with detections, matched filter images with detections and local maxima, and a 
histogram of local maxima intensities with outlier/detection threshold. 

 
Figure 10: Example planet detection results for the “R02_v2_rez1_snr1_1em10” scenario. A 2x3 set of subplots is 
shown where rows 1,2 correspond to passbands [425-522] and [615-800] respectively. Columns 1,2,3 of the plot 
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correspond to: foreground images with detections, matched filter images with detections and local maxima, and a 
histogram of local maxima intensities with outlier/detection threshold. 

In addition to planet detections found using the described approach, human labelled detections 
are also included for instances where the automated detection approach left obvious true 
positives undetected. Many presumed false positives were not removed to give a 
representative idea of false positive rate resulting from the automated detection method. 
 

2.3 Planet Parameter Estimation 
 
While the detection problem described in section 2.2 can be summarized as detecting pixels in 
the image which correspond to planets, the problem of estimating parameters for each 
detected planet can be considered as a fairly independent subproblem. The following approach 
was taken for estimating parameters per planet: 
 

1. For each planet detection in a given image, select an NxN pixel ROI centered on the 
detection. In this case the select ROI width was 7 pixels. 

2. Fit a parameterized model of a PSF to the sampled ROI region, using a standard 
nonlinear least squares approach.  

3. Use the center location and magnitude from the best-fit PSF to ultimately compute: 
planet location and uncertainty, photon counts, and SNR. 

 
Since the PSFs are known and provided, ideally a PSF with known form can be used for step 2 
above, such that the true PSF shape is known and the position and amplitude can be estimated 
for a given planet. Because the PSFs provided for the instrument are at single pixel instrument 
resolution rather than some sub-pixel resolution, it is difficult to use them effectively for 
estimation of sub-pixel planet locations. One idea would be to take the PSFs provided at native 
resolution, and parameterize subpixel shifts via some smooth 2D interpolation. This may not 
correctly account for binning effects of pixel sampling, and therefore may not be a great 
representation of the true sub-pixel PSF. A different approach was taken to achieve sub-pixel 
parameterization. A 2D gaussian function was used, but the relationship between the Gaussian 
model and the provided PSFs was characterized in advance such that the biases introduced by 
using a Gaussian PSF instead of the true instrument PSF may be corrected. The process for 
accounting for the biases introduced by using a Gaussian PSF are as follows: 
 

1. The known PSFs at single pixel resolution are loaded and a 2D gaussian model is fit to 
each known PSF within NxN ROI around the PSF center. For each best fit Gaussian, the 
sigma is saved along with the ratio of the sum of the counts of Gaussian PSF intensity, 
divided by the sum of the counts of the true PSF. The sigma and counts ratio are then 
saved in a lookup table vs image position, passband, and instrument scenario. 

2. When performing estimation for detected planets, the lookup table generated in step 1. 
is queried to obtain correct sigma and counts ratio for the specific detection being 
performed. 
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3. A least-squares fit is performed by fitting a 2D gaussian to the observed planet in the 
NxN ROI. The sigma is constrained to equal the value from the lookup table, and three 
free parameters are estimated, x,y location and amplitude.  

4. The x,y location is taken as-is to be the sub-pixel estimate of planet position, whereas 
planet photon count is estimated as the sum of the best fit gaussian PSF, divided by the 
counts ratio correction factor which was previously generated relative to the known 
instrument PSF. 

 
This is a somewhat ad hoc approach to leverage the known instrument PSFs for sub-pixel 
estimation despite the PSFs being available only in single pixel resolution.  
 
A more ideal approach would be to find an appropriate sub-pixel parameterization of the 
provided PSFs using an interpolation scheme, and then solve a weighted least squares problem 
where weights are used to reduce the influence of pixels in the ‘tails’ of the PSF with poor SNR. 
In the case of the Gaussian proxy model there is a quick intensity roll off from the peak, such 
that using weighted least squares to account for per-pixel SNR may be less critical. Repeating 
some of this estimation with the benefit of ground truth values some subset of the data would 
be informative for guiding development and ranking the accuracy of approaches. For the 
purpose of the data challenge, the results from the proxy Gaussian PSF approach are used. 
 
It should also be noted that in some cases, structured non-random residual from imperfect 
background subtraction may bias the PSF fit substantially. The problem of optimal estimation 
for individual planet location is likely limited by background subtraction quality rather than 
particulars of some PSF estimation approach assuming only the presence of random 
measurement noise. 
 
The SNR estimate for a given planet was calculated using a variation on equation 6.6 from the 
Wide Field and Planetary Camera 2 Instrument Handbook.[5] The general equation was 
modified to use available input: 
 

𝑆𝑁𝑅 =
𝑆𝑜𝑏𝑗𝑒𝑐𝑡

√𝑆𝑜𝑏𝑗𝑒𝑐𝑡 +  𝑛𝑜𝑖𝑠𝑒_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙2 𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠⁄
 

 
Where: 

• 𝑆𝑜𝑏𝑗𝑒𝑐𝑡 [e-] is the total PSF counts estimated for the detection.  

• 𝑛𝑜𝑖𝑠𝑒_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙 [e-] is estimated as a local standard deviation of pixels around the 
outer perimeter of a detected PSF. 

• 𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 [unitless] is calculated as specified in equation 6.5 of Wide Field and 
Planetary Camera 2 Instrument Handbook. 

 
This is a significantly simplified version of equation 6.6 of Wide Field and Planetary Camera 2 
Instrument Handbook where 𝑛𝑜𝑖𝑠𝑒_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙 is a value derived empirically from the image. 
The 𝑛𝑜𝑖𝑠𝑒_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙 is estimated by taking the standard deviation of a local set of pixels 
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around a perimeter of given PSF for a detected planet. This should give a reasonable local 
estimate of all noise sources affecting the detection, other than the Poisson noise which 
increases near the center of the PSF.   

3 Results 
 
All estimated parameters and detections are compiled in the following files which are attached 
and delivered with this report: 
 

• level_1_results_rev4_1em10.json: All generated results for the 1em10 scenario 

• level_1_results_rev4_1em9.json: All generated results for the 1em9 scenario 
 

4 Implications 
 
This section provides opinions on some of the original questions posed by the StarShade data 
challenge:  
 
Can backgrounds be calibrated to the photon-noise limit? 
 
For some scenarios, based on visual inspection, it appears that magnitude of residual after 
background subtraction is dominated by random instrument noise. These ideal background 
residuals tend to be either from scenarios starting with low background intensity, or medium 
background intensity scenarios where the ICA model happened to fit very well. For these 
scenarios with low background residual, matched filtering detection should yield point source 
detection approaching optimal detection performance given random noise sources.[6] In many 
other scenarios the residuals from background subtraction included large structured model 
errors. In general backgrounds were not successfully calibrated to the photon-noise limit. 
 
Are planets and exozodiacal dust disks or clouds separable from a single image? 
 
Yes, both the parametric approach and non-parametric approaches demonstrate that it is 
possible to develop a background model which can separate background signal from planet 
signal in a single broadband image. However it may require many images to develop good 
background models, but once a background model is developed, it can be applied to a single 
broadband image to provide reasonable separation. Multi epoch and multi spectral images of 
the same system will certainly help and probably give better results vs the single broadband 
image scenario. 
 
How sensitive is the planet detection capability to the instrument performance? 
 
The main limiting factor tended to be background subtraction quality rather than instrument 
performance. For the special cases where background subtraction works well, the instrument 
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performance becomes limiting. The dominant background source tends to be exozodi, whose 
intensity are more a function of the planetary system being imaged rather than the instrument. 
As background subtraction methods improve, instrument performance may tend to become 
limiting.  
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