

ExEP Resources Available to Strategic Astrophysics Technology (SAT) PIs

Brendan Crill

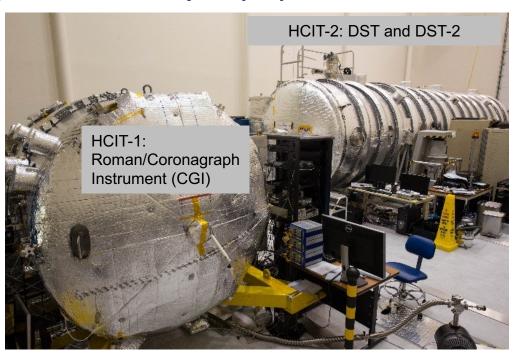
Deputy Program Chief Technologist

NASA Exoplanet Exploration Program (ExEP)

Jet Propulsion Laboratory/California Institute of Technology

9/12/22

ExEP Resources for SAT PIs


 This presentation provides an overview of the ExEP resources located at JPL available to support a Strategic Astrophysics Technology (SAT) proposal.

The available resources, if appropriate for your needs, may help you more efficiently meet your milestone goals and reduce your proposal costs and

schedule.

Available Resources

- High Contrast Imaging Testbed (HCIT) laboratory:
 - Vacuum coronagraph testbeds:
 - Decadal Survey Testbed (DST)-1
 - DST-2 (commissioning in CY2023)
 - Vacuum Surface Gauge (for metrology)
 - In-air coronagraph testbed
- Starshade
 - Modeling software (SISTER)
 - Scatter measurement testbed

Unavailable Resources

HCIT-1 (dedicated to Roman)

Gaining Access to the ExEP Resources at JPL

How to Request Use of ExEP Resources at JPL

- Submit preliminary Statement of Work (SOW) for use of ExEP resources to Brendan Crill no later than <u>November 28, 2022.</u>
 - Follow SOW questionnaire on next page.
- Schedule telecon with Brendan Crill before <u>Dec 9, 2022</u> to discuss use of the resources of interest and to obtain costing guidelines.
 - We will evaluate with the PI workforce, labor, and infrastructure access required across all received SOWs.
 - Proposal due date is Dec 15, 2022
- Brendan Crill will supply the proposal PI a Letter of Commitment for use of any ExEP resources.
 - PIs are to include both the SOW and the Letter of Commitment in their proposal (due December 15, 2022).
 - HCIT will provide workforce cost to set up testbeds; additional labor and unique procurements must be costed within the proposal.
- The Letter of Commitment does not assure selection of the proposal; lack of a SOW or Letter in a submitted proposal could adversely affect proposals intended to utilize ExEP resources.

SOW Questionnaire for Use of ExEP Testbed Resources

- Brief description of the proposed SAT
- 2. What resources are requested?
- 3. Milestone(s) to be accomplished and performance goals
- 4. Brief description of how the work will be conducted
- Period(s) and preferred dates, if any, over which the resource is requested, stating whether in vacuum or air for testbeds. Include any time required for preparatory work.
- 6. A list of the personnel, expertise, and level of effort (if any) who will assist in the use of the resource.
- Any anticipated changes to the resource needed to accommodate your demonstrations.
- 8. List of items needed for all testbed modifications. Identify items you will be procuring within your proposal's budget and provide approximate cost of needed items.
 - a. Otherwise, state that no additional procurements will be necessary for the use of the infrastructure under consideration.
- 9. Provide any other relevant information or constraints.

Strategic Astrophysics Technology Timeline

- The timeline for requesting access to ExEP resources is based on the dates specified in <u>ROSES SAT-2022</u>
- Mandatory notice-of-intent (NOI) to propose to SAT-2022 is due on November 4, 2022
- The proposal deadline is <u>December 15, 2022</u>

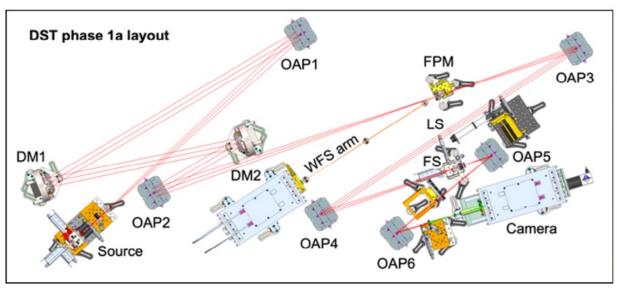
ExEP Technology Resources POC

For questions concerning use of ExEP technology resources or requests for more detail contact:

Dr. Brendan Crill
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Office: (818) 354-5416

Email: bcrill@jpl.nasa.gov



Additional Slides

Decadal Survey Testbed bench layout

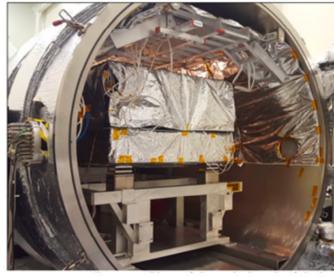


Figure 1: (Left) DST phase-1a commissioning layout. (Right) The DST bench in the HCIT2 vacuum chamber, covered in multi-layer insulation (MLI) and resting atop a support frame, Minus-K isolators, and Vespel platforms.

Decadal Survey Testbed 2 bench layout

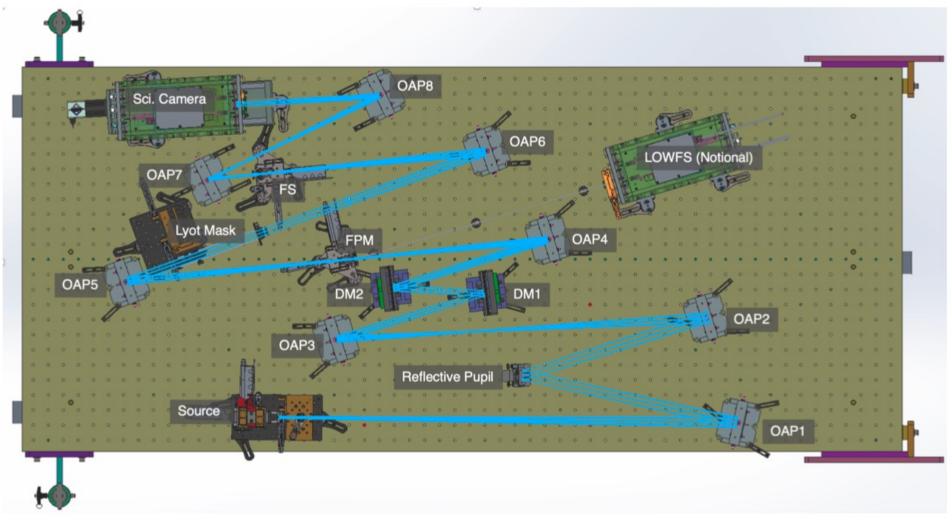
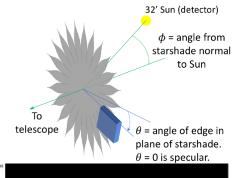


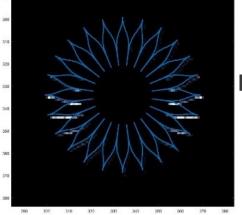
Figure 6: Top-down view of the DST2 bench CAD model with Zemax raytrace overlaid. Key elements are labeled.

Meeker et al. 2021 SPIE proceedings

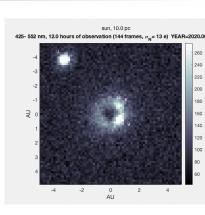
Starshade Imaging Simulation Toolkit

SISTER is a Matlab-based, versatile tool designed to provide accurate, diverse starshade astrophysical simulations.

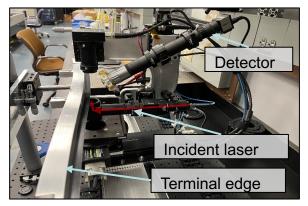

It allows for controlling a set of instrument and system parameters :

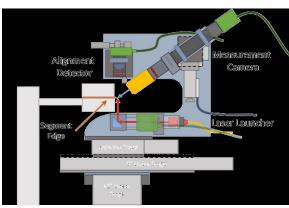

- (1) the starshade design and position,
- (2) the exoplanetary system,
- (3) the optical system (telescope) and
- (4) the detector (camera).

There is a built-in plotting software added, but the simulations may be stored on disk and plotted with any other software.

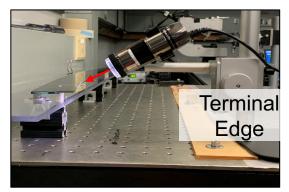

SISTER is an open source, well-documented project that will evolve with starshade.

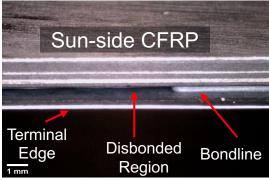
Other modeling capabilities developed by S5 may be available to proposers.

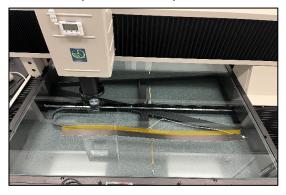

sister.caltech.edu



Starshade Scatter Measurement Testbed




Single-angle scatterometer (SAS)



Microscopic Inspection

In-plane shape measurement (MicroVu)

The S5 Scatter
Measurement Testbed
includes custom
metrology systems to
measure shape and
scatter performance of
optical edges and other
starshade components.