Novel Methylated Biosignatures: Outcomes of a General Metabolic Process as a New Class of Biosignatures

Michaela Leung, E. W. Schwieterman, M. N. Parenteau University of California, Riverside ExoPAG 26

NASA ICAR program

Contact: mleuno19@ucr.edu www.astromichaela.com

@michaelaleung

Trimethylarsenide is produced as a volatilization of environmental As

Fungi such as Scopolariopsis perform the methylation

Methylated gases have been previously established as biosignatures

CH₃Cl

• Segura et al., 2005

(CH₃)₂S

 Domagal-Goldman et al., 2011

There are many potential methylated biosignatures

Methylated • CH₂BrCl
Halogens • CHBr₂Cl
• CH₃Cl
• CH₂Cl
• CH₂Ll
• CHCl₃
• CHCl₃
• CHl₃
• CCl₄
• CH₃Br
• CH₂IBr
• CHBr₃
• CHIBr₂

• CBr₄

Methylated • $(CH_3)_2SeS$ Chalcogens • CH₃SeH (CH₃)₂S
 (CH₃)₂Te • (CH₃)₂S₂ • (CH₃)₂Te₂ • CH₃SH • (CH₃)₂Se • (CH₃)₂Se₂ • CH₃SeS

Methylated Metal(loids)

• (CH₃)₃As

• (CH₃)₂AsOH

• (CH₃)₃Sb

• (CH₃)₃Bi

• (CH₃)₂Hg These are potential capstone biosignatures

Not as detectable as 'primary' biosignature such as O₂

Could be detected alongside primary biosignature features or in follow up observations

Has very limited abiotic pathways which results in low false positive potential

Case study of methylated gases: CH3Cl and CH3Br

Methods

01

Atmos – 1D photochemistry (Arney et al., 2016) 02

SMART – transmission and emission spectra (Meadows & Crisp 1996) 03

PSG - spectral & instrumental modeling
(Villanueva et al., 2018, 2022)

CH₃Cl: Revisited

- Significant changes have been made to atmos since Segura et al., (2005) including updating all reaction rates
- Our version of the code does not exactly replicate previous results with CH₃Cl but maintains the same overall conclusions

0.1 – 10x Earth-like flux 0.001 – 1000x Earth-like flux

Photochemical Results – CH₃Br has even higher build up around M dwarfs

Earth-like flux

Simulated observations

Multiple methylated gas features near 10 µm

- Adjacent features generated from Chalogen bond which varies in specific methylated compounds and generates adjacent features
- We expect this advantage to continue for additional methylated gases

10.0 12.5

Multiple methylated gases make detection much easier

High resolution spectral simulations

Future Work

Iodine species (CH₃I)

Exploring additional methylated species through photochemical and spectral modelling

Laboratory and field measurements of fluxes of methylated gases to inform model input Polyhalomethanes e.g. CH₂BrCl

Methylated chalcogens e.g. (CH₃)₂Se

Alternative Methylated Biosignatures I: Methyl Bromide, A Capstone Biosignature

MICHAELA LEUNG , 1, 2, 3 EDWARD W. SCHWIETERMAN , 1, 2, 3, 4 MARY N. PARENTEAU, 5, 3, 2 AND THOMAS J. FAUCHEZ , 6, 7, 3, 8

¹Department of Earth and Planetary Sciences, University of California, Riverside, California, 92521

²NASA Alternative Earths Team

³NASA Nexus for Exoplanet System Science, Virtual Planetary Laboratory Team, Box 351580, University of Washington, Seattle, Washington, 98195

⁴Blue Marble Space Institute of Science, Seattle, WA, USA

⁵NASA Ames Research Center

⁶NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
⁷Sellers Exoplanet Environment Collaboration (SEEC), NASA Goddard Space Flight Center
⁸American University, Washington DC, USA

Submitted to ApJ

Methylated gases present an exciting new class of biosignatures CH₃X gases are likely detectable with next generation MIR capable telescopes, confirming status as capstone biosignatures

Takeaways

Contact:

mleuno19@ucr.edu

www.astromichaela.com

@michaelaleung

Co-additive spectral effect for atmospheres with multiple methylated gases; motivates further work on large range of add'l gases