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Planning an observation on a NEW instrument
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Science Traceability Matrix (STM)

NASA EXOPLANET
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A tool to communicate how the science shapes the mission

Flows the science goals and objectives to instrument and mission
requirements

Science objectives should be quantified
Shows a well-understood concept

Table 2: Origins Science Traceability Matrix
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Exoplanet science yield model
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EXOSIMS: Open source. Python. Parametric. Probabilistic. Modular.

— Creates Monte Carlo ensembles of missions.
https://github/dsavransky/EXOSIMS
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THE IMPORTANCE OF METRICS



Exoplanet metric: number of habitable zone exoplanets

spectrally characterized to a specific SNR, R, BW

Metrics may represent different tiers of science goals

Metric A: 20% BW
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Different yield metrics reveal different sensitivities
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Observing scenario, SNR, spectral resolution, number of sub-spectra, and precursor knowledge effect yield.
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More comparisons of metric impact on architectures in Morgan et al. 2021
https://doi.org/10.1117/1.JATIS.7.2.021220



https://doi.org/10.1117/1.JATIS.7.2.021220
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Metrics quantify performance sensitivity to key parameters “%(EP

What is the shape of the curve for other metrics?
For tiered observing scenarios that combine metrics?
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What are good metrics going forward?

Represent the desired science measurable at a quality required to accomplish
the science goal

— Clearly communicate apples from oranges
— Computationally tenable for many iterations and trades

Defining the science metrics is work

— That will require iterating on the science performance models
— That will likely require iterating on the measurement models
— There are nuances that are worth understanding EARLY

— There is an opportunity with this workshop to identify the work that needs to
be done to design good metrics

We as a community need to be clear on which metric we are using so that
there are not apples to oranges comparisons muddying the trades.
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Common Comparison

https://exoplanets.nasa.gov/exep/studies/sdet ©
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PROGRAM

NASA EXOPLANET PROGRAM About Studies N Ve Technology NExScl ExoPAG For the Public

Decadal STDT: SDET SSW( Probe Scale STDT

Standard Definition and Evaluation Team

Overview
Documents

Two of the four large mission concept studies for the Astrophysics Decadal Survey - -

were designed to directly image and spectrally characterize earth-like exoplanets. In o SDET Charter Y f d m d t I
2016, the Astrophysics Division chartered an Exoplanet Standard Definition and « SDET Final Report O u Ca n I n 0 re e a I S
Evaluation Team (ExSDET) for the purpose of providing an unbiased science yield

analysis of the multiple large mission concepts using a transparent and documented set I n t h e FI n a I Re p O rt

of common inputs, assumptions and methodologies.

Over the course of the past three years, the ExSDET has responded to the direction Cases

provided in the charter and the required deliverables by performing the following tasks:
» Case 1: HabEx 4H hybrid, metric C1

Develop analysis tools that will allow quantification of the science metrics of the
mission studies

o Case 2: LUVOIR B, metric A
« Case 3: HabEx 4C, metric C2

Incorporate physics-based instrument models to evaluate both internal and external
occulter designs « Case 4: HabEx 4S, metric C2

Establish the science metrics that define the yield criteria

Cross validate the various analytical methodologies and tools

Provide complete evaluations using common assumptions and inputs of the Links
exoplanet yields for each mission concept.

+ EXOSIMS on Github

The primary goal of the SDET Final Report is to present the best understanding of the * AYO for LUVOIR
exoplanet imaging and characterization capabilities of the current STDT observatory « Habitable Exoplanet Observatory
and instrument designs, along with their nominal operating plans, using common input (HabEx)

assumptions and analysis methodologies. This report is explicitly not intended to

. o1 X . o Large UV-Optical-Infrared Surveyor
present an exploration of the capabilities of the full design spaces available to the

LUVOIR
various mission concepts. Due to large uncertainties in the astrophysics inputs,
particularly exo-earth occurrence rate, the yield values should be considered relative
rather than absolute.
Papers

A. Water line
« EXOSIMS Overview in JATIS
8. Oxygen + Water

lines R « EXOSIMS Overview

C1HabExFull  [[R=7,5NR=5 | R=140, SNR = 10 |
spectrum o EXOSIMS Validation
C2. HabEx | R=70,5NR=10 |
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Spectrumn A S — ———— —————
300 400 500 600 700 800 900 1000 1100 1200 e AYO 2015

(nm)

« AYO 2016 Starshades
Figure 1. Characterization metric A facilitates a quick search for the water line at 940 nm with a
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NPR 7120.5F
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NASA Life- pproval for
Cyde Phases ulati FORMULATION IMPLEMENTATION
Project Pre-Phase A: Phase A: Phase B: Phase C: Phase D: Phase E: Phase F:
Life-Cycle Concept Studies Concept & Preliminary Design & Final Design & System Assembly, Operations & Closeout
Phases Technology Technology Fabrication Integration & Test, Sustainment
Development Completion Launch & Checkout
ProjectLie-Crcis KDPA KDP B\ / KDPC KDP D KDP EV KDPF Sk
Gates, FADM FA Archival
Documents, and A Prelimin Baseline T EndofMssipn ©f Data
Major Events Pmlimhaypmjec?é Project 2S Project f} f}
Requirements A Plan Plan
Agency
Reviews S
Flgh Preject A AA A A A AN A 2\
Flight Project A \
Life-Cycle MCR SRR SDR PDR CDR/ SIR ORR FRR PUAR CERR* DR DRR
Reviews 112 PRR? End of
Flight A
Re-flights® 4 4 4 4 A 4
Re-enters life cycle ag appropriate based on upgfade needed after flight PFAR
Robotic Mission
Project Life- A AA A A AANN A AA
Cyola 1.2 MCR SRR MDR?® PDR CDR/ SI ORR MRR HLAR CERR* DR DRR
Reviews ' PRR?
Other SMSR, LRR
Reviews SAR® (LV], FRR(LV)
::slporﬁng V\ Peer Reviews, Subsystem PDRs, Subsystem CDRs, and System Reviews /\l
ews
| | | |
FOOTNOTES ACRONYMS MDR - Mission Definition Review
1. Flexibility is allowed as to the timing, number, and content of reviews as long ASM - A‘f!“"""”‘. St’a‘elgy Meeting MRR - Mission Readiness Review
as the equivalent information is provided at each KDP and the approach is fully | CDR-Critical DesignReview ORR - Operational Readiness Review
documented in the Project Plan. CERR - Critical Events Readiness Review PDR - Preliminary Design Review
2. Lifecycle review objectives and expected maturity states for these reviews and R IECO RS oHi e eV e PFAR - Post-Flight Assessment Review
the attendant KDPs are contained in Table 2-5. DRR - DisposalReadiness Review PLAR - Post-Launch Assessment Review
3. PRR is needed only when there are multiple copies of systems. It does not FA - Formulation Agreement PRR - Production Readiness Review
require an SRB. Timing is notional. FAD - Formulation Authorization Document SAR - System Acceptance Review
4. CERRs are established at the discretion of Program Offices. : FRR - Flight Readiness Review SDR - System Definition Review
5. For robotic missions, the SRR and the MDR may be combined. KDP - Key DecisionPoint SIR - System Integration Review
6. SAR generally applies to human space flight. LRR - Launch Readiness Review SMSR - Safety and Mission Success Review
7. Timing of the ASM is determined by the MDAA or AA, as compliant with NPD LV - Launch Vehicle ) SRB - Standing Review Board
1000.5 and may take place at any time during Phase A. MCR —Mission ConceptReview SRR - System Requirements Review
8. Placement of arrows is notional. See Section 2.2.4.3 for more guidance on Red triangles represent life-cycle reviews that require SRBs. The Decision Authority,
reflights. Administrator, MDAA, or Center Director may request the SRB to conductother reviews.
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