Exoplanet Exploration Program Technology

Brendan Crill
Deputy Program Chief Technologist
Exoplanet Exploration Program
Jet Propulsion Laboratory / California Institute of Technology

Nicholas Siegler
Program Chief Technologist
Exoplanet Exploration Program
Jet Propulsion Laboratory / California Institute of Technology

Pin Chen
Deputy Technology Development Manager
Exoplanet Exploration Program
Jet Propulsion Laboratory / California Institute of Technology

ExoPAG 25 12 January 2022

Recent Technology Activities

Technology Gaps

Strategic Astrophysics Technology (SAT) Grants

Coronagraph architectures: modeling and demonstrations

Wavefront control

- Extreme Precision Radial Velocity
- Detectors

Ultra-Stable Coronagraph Testbeds

Nulling Interferometry Study

Technosignatures Gap List Study

Starshade Technology Development

Segmented
Coronagraph
Design & Analysis Study

The Future is Here!

Key Exoplanet Decadal Recommendations

Introducing the Maturation Program:

Recommendation: The NASA Astrophysics Division should establish a Great Observatories Mission and Technology Maturation Program, the purpose of which is to co-develop the science, mission architecture, and technologies for NASA large strategic missions identified as high priority by decadal surveys.

An IR/O/UV Great Observatory focused on exoplanet science is first:

Recommendation: After a successful mission and technology maturation program, NASA should embark on a program to realize a mission to search for biosignatures from a robust number of about ~ 25 habitable zone planets and to be a transformative facility for general astrophysics. If mission and technology maturation are successful, as determined by an independent review, implementation should start in the latter part of the decade, with a target launch in the first half of the 2040s.

NASA's response to the Decadal

See Paul Hertz town hall from Jan 11, 2022

- Future Great Observatory preparation in pre-Phase A stages:
 - Stage 1 is now; includes precursor science and technology work
 - Stage 2 starts in a few years; begins the Maturation Program and will add an Analysis of Alternatives and science / technology / architecture trades
 - Stage 3 includes the decision to start and a transition to the classic pre-Phase-A
- APD is defining what technology development means under the Maturation Program
 - How to best use SATs and other funding mechanisms to advance technology
 - How to engage industry
 - Understanding the future of large launch vehicles
 - Considering servicing of future large missions
 - Exploring international collaborations

Astrophysics Technology Gaps

- A technology gap is the difference between a capability needed to enable a future mission and the current state-of-the-art
- The Astrophysics Division maintains a prioritized Technology Gap List

 Program Office technologists carry out a biennial Technology Selection and Prioritization Process:

- Identify Technology Gaps applicable to Astrophysics strategic objectives
- Rank Technology Gaps to prioritize them for investment
- Inform the community of NASA's technology needs
- The last update was in 2019

2019 Astrophysics Technology Gaps

				_
Tier 1	lec	nnol	OUA	Gans

Angular Resolution (UV/Vis/NIR)

Coronagraph Contrast

Coronagraph Contrast Stability

Cryogenic Readouts for Large-Format Far-IR Detectors

Fast, Low-Noise, Megapixel X-Ray Imaging Arrays with Moderate Spectral Resolution

High-Efficiency X-Ray Grating Arrays for High-Resolution Spectroscopy

High-Resolution, Large-Area, Lightweight X-Ray Optics

Large-Format, High-Resolution, UV/Vis Focal Plane Arrays

Large-Format, High-Spectral-Resolution, Small-Pixel X-Ray Focal-Plane Arrays

Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors

Large-Format, Low-Noise, High-QE Far-UV Detectors

Next-Generation, Large-Format, Object Selection Technology for Multi-Object Spectrometers for LUVOIR

Vis/NIR Detection Sensitivity

Tier 2 Technology Gaps

Advanced Millimeter-Wave Focal-Plane Arrays for CMB Polarimetry

Detection Stability in Mid-IR

Heterodyne FIR Detector Arrays and Related Technologies

High-Efficiency Object Selection Technology for UV Multi-Object Spectrometers

High-Performance Spectral Dispersion Component/Device

High-Reflectivity Broadband FUV-to-NIR Mirror Coatings

High-Throughput Bandpass Selection for UV/Vis

Large-Format Object Selection Technology for Multi-Object Spectrometers for HabEx

Starshade Deployment and Shape Stability

Starshade Starlight Suppression and Model Validation

Stellar Reflex Motion Sensitivity – Astrometry

Stellar Reflex Motion Sensitivity - Extreme Precision Radial Velocity

Tier 3 Technology Gaps

Advanced Cryocoolers

High-Performance, Sub-Kelvin Coolers

Large Cryogenic Optics for the Mid-IR to Far-IR

Long-Wavelength-Blocking Filters for X-Ray Micro-Calorimeters

Low-Noise, High-QE UV Detectors

Low-Stress, Highly Stable X-Ray Reflective Coatings

Photon-Counting, Large-Format UV Detectors

Polarization-Preserving Millimeter-Wave Optical Elements

UV Coatings

UV Detection Sensitivity

UV/Vis/NIR Tunable Narrow-Band Imaging Capability

Warm Readout Electronics for Large-Format Far-IR Detectors

Tier 4 Technology Gaps

Compact, Integrated Spectrometers for 100 to 1000 µm

Optical-Blocking Filters

Rapid Readout Electronics for X-Ray Detectors

Short-Wave UV Coatings

Tier 5 Technology Gaps

Advancement of X-Ray Polarimeter Sensitivity

Far-IR Spatio-Spectral Interferometry

High-Precision Low-Frequency Radio Spectrometers and Interferometers

Mid-IR Coronagraph Contrast

Ultra-High-Resolution Focusing X-Ray Observatory Telescope

Very-Wide-Field Focusing Instrument for Time-Domain X-Ray Astronomy

Wide-Bandwidth, High-Spectral-Dynamic-Range Receiving System for Low-Radio-Frequency Observations on the Lunar Far Side

ExEP Technology Gaps

Astrophysics Technology Gaps

- Inputs from the community were due Jan 3, 2022
- 96 gap submissions received
 - 48 gaps currently on the gap list
- Next Steps:
 - Each gap assigned to one of the 3 program offices: PCOS,COR, ExEP
 - Disposition, review and consolidate gaps
 - Prioritize gaps
 - Work reviewed by ExoTAC
- Delivery of Gap List to community in April 2022

10 Currently Active Strategic Astrophysics Technology (SAT) Awards

Coronagraph masks/architectures

- Vortex Coronagraph (Serabyn/NASA-JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (Belikov/NASA-ARC)
- Super-Lyot Coronagraph (Trauger/NASA-JPL)
- Apodized Pupil Lyot Coronagraph (Soummer/STScI)

Wavefront-control techniques

- Single mode fiber and optimization for spectroscopy (Mawet/Caltech)
- Linear Dark Field Control (Guyon/Arizona)
- Multi-star Wavefront Control (Belikov/NASA-ARC)

Detectors

- Vis-band rad-hard photon-counting detectors (Rauscher/NASA-GSFC)
- Ultra-stable mid-IR detector array (Staguhn/JHU)

Extreme Precision Radial Velocity

 Micro-resonator optical etalon for radial velocity measurements (Vasisht/NASA-JPL)

SAT coronagraph demonstrations in the High-Contrast Imaging Testbed

PIAACMC (PI Belikov)

- PIAACMC technology promises excellent inner working angle
- Achieved 1.5x10⁻⁸ contrast with a segmented pupil, target was 10⁻⁹
- Error budgeting for Final Report coming soon

Vortex coronagraph (PI Serabyn)

- Vortex coronagraph was LUVOIR-B and HabEx baseline
- New record contrast achieved $2x10^{-9}$ over 10% band for working angles 3-10 λ/D
- Record for 20% band: 6x10-9 contrast over 3-10 λ/D
- Earlier in the summer: 5x10⁻⁹ contrast
 over 10% band achieved with a static segmented pupil

Super Lyot ExoEarth Coronagraph (PI Trauger)

- Hybrid Lyot coronagraph has demonstrated the deepest contrast to-date
- Installed in testbed and next in queue; results coming soon.

Other Recent SAT Highlights

Multi-star wavefront control (PI Belikov)

- Enables coronagraph to observe planets in multi-star systems
- Installed in vacuum testbed;
 demonstrations commencing soon
- Contributed mask for Roman CGI fabricated (Eduardo Bendek; technical lead)

Linear Dark Field Control (Pl Guyon)

- Uses residual starlight outside coronagraph dark hole to stabilize the dark hole, potentially leading to looser telescope stability requirements
- Milestone report published on ExEP website
- Spatial dark field control technique demonstrated a factor 30 improvement in coronagraph contrast at 10-6 on an in-air testbed
- Future milestones include tests in vacuum at higher contrast and using spectral information

Testbed Infrastructure

Decadal Survey Testbed 2

- New ultrastable coronagraph testbed bench with additional pupil plane
- Achieved first light in November 2021
- Will be available to future investigators starting with SAT-2021

Test Mount

MEMS 2K DM environmental tests

- The Boston Micromachines 2k MEMS deformable mirrors (DMs) were subjected to 3-axes random vibe with Roman Space Telescope launch loads.
- Passed both functional and coronagraph performance testing and achieved better than 10⁻⁸ contrast in the HCIT's In-Air Coronagraph Testbed.
- A final report has been completed.
- A new DM electronics controller under development by Teilsch
 - 18 bit control, more compact design

Segmented Coronagraph Design & Analysis Study

- Purpose:
 - Coronagraph feasibility with segmented-mirror telescope
 - Coronagraph/segmented telescope system feasibility
- Multi-institutional study of end-to-end modeling of telescope dynamics, wavefront control, and coronagraph -> science yield
- In collaboration with Ball, Lockheed Martin telescope modeling and in coordination with STScI wavefront-control modeling (for LUVOIR-A)
 - Reconfirmed requirement for ~10 pm WFE stability, per LUVOIR report

Possible Next Steps:

- Study ~ 6-meter-class telescope yield sensitivities
- Telescope model to incorporate active metrology
- Enhance model integration, fidelity, and access

S5: Closing Starshade Technology Gaps

https://exoplanets.nasa.gov/exep/technology/starshade/

Suppressing diffracted light from on-axis starlight and optical modeling (S-2)

Fabricating the petals to high accuracy (S-4)

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Starshade Updates

Model validation

- Traces subscale demo performance to full-scale starshade
- Including vector diffraction still in progress;
 agreement not quite at the 25% level.

Formation Flying:

- Starshade needs sensing of line of sight position relative to telescope to within centimeters with separations of ~10,000 km
- Princeton subscale testbed demonstration of high contrast with simultaneous position sensing in the loop (PI Kasdin)
- Final Report on this technique passed review by ExoTAC, is posted on ExEP website

Petal Shape Stability

- Starshade must maintain shape in operational thermal environment
- Milestone final report on thermal deformation of petals completed and posted on website

Technosignatures Gap List Study

- The ExEP commenced a fact-finding study to understand where it can make a positive impact towards the search for technological life.
- The Study will help the ExEP better understand the landscape.
 and needs of the field if investments are ever considered again (Congress, donors).
- Key fields within the database will include:
 - Technosignature search approaches
 - Technology needs and gaps
 - Other needs to advance the searches (access to existing facilities, future facilities, AI/ML, \$'s, data archiving)
- Study is planned to conclude summer of CY22
 - First milestone completed in December 2021 (data fields to be collected)
 - Reviewed by an external Technosignatures Assessment Committee

Completed Nulling Interferometry Study

- In 2021, ExEP completed a study to update technology gaps related to nulling interferometry
- JPL-GSFC Team: B. Mennesson (PI), G. Serabyn, S. Martin, W. Danchi, C. Stark, P. Chen
 - Revisited TPF-I science goals
 - Summarized lessons learned since TPF-I
 - Preliminarily investigated application of high spectral resolution
 - Identified technology gaps
- 2021 Decadal Survey did not prioritize this capability

The Gap List						
#	Gap Name		#	Gap Name		
Gap #1	Cryogenic single mode spatial filters		Gap #6	Cryogenic four-beam nulling		
Gap #2	Cryogenic deformable mirrors		Gap #7	Cooling		
Gap #3	Cryogenic delay lines		Gap #8	Detector technology		
Gap #4	Laser metrology systems		Gap #9	Mirror technology		
Gap #5	Cryogenic broadband nulling at N-band		Gap #10	Formation flying technology		

Exoplanet Exploration Technology Colloquium Series

A Worldwide Survey of Deformable Mirrors Eduardo Bendek (JPL)

- Recordings and slides available:
 - https://exoplanets.nasa.gov/exep/technology/tech_colloquium/

Roman **Exoplanet** JWST² Missions ARIEL⁷ (CASE⁸) **TESS** PLATO Kepler CHEOPS 4 NASA Spitzer **Missions** Gaia Hubble¹ CoRoT³ **ESA Partner Missions** The path towards the **Future Great Observatories** is under development

W. M. Keck Observatory

7 ESA

8 NASA

¹ NASA/ESA Partnership

² NASA/ESA/CSA Partnership

3 CNES/ESA

⁴ ESA/Swiss Space Office

Join us!

BACKUP

V-NIR Coronagraph/Telescope Technology Gaps

Contrast

CG-3: Deformable **Mirrors**

CG-4: Data **Post-Processing**

Angular Resolution

CG-1: Segmented Mirrors

Contrast Stability

Sensing and Control

CG-6: Mirror Segment Phasing

CG-7: Telescope Vibration Sensing and Control or Reduction

Detection Sensitivity

Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

Other Technology Gaps

UV Contrast

CG-10 UV/V/NIR Mirror Coatings

UV Detection Sensitivity

CG-12: Ultra-low Noise UV Detectors

Stellar Reflex Motion Sensitivity

M-2: Laser Frequency Combs for Space-based EPRV

M-1: Ground-based Ultra-high Precision Radial Velocity

M-3: Astrometry

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy

Mid-IR Technology Gaps

Mid-IR Coronagraph Contrast

CG-10 UV/V/NIR Mirror Coatings

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy