

James Webb Space Telescope Exoplanet Science Update

Knicole Colón

JWST Deputy Project Scientist for Exoplanet Science NASA Goddard Space Flight Center ExoPAG 25 10 January 2022

Credit: Arianespace, ESA, NASA, CSA, CNES

JWST successfully launched from Kourou, French Guiana, on December 25, 2021!

Credit: (NASA/Bill Ingalls)

The JWST mission is currently at L+16 days.

All major deployments have successfully completed as of January 8!

Deployment Activities

EARTH

Initial sunshield deployment .

- Solar array deployed
- Gimbaled antenna assembly released
- Deployable tower assembly extended
- Aft momentum flap deployed
- Sunshield pallet structures deployed and mid-booms extended
- All five layers of the sunshield fully tensioned
- Secondary mirror support structure deployed and locked in place
- Aft deployable instrument radiator deployed
- Both primary mirror wings deployed and latched

Tensioning and separation of sunshield's layers

Secondary mirror support unfolds

> Two primary mirror lateral wings deploy

Where is Webb?

Where Webb is as of ~11:00am EST, January 10, 2022.

https://webb.nasa.gov/content/webbLaunch/whereIsWebb.html

APOD JWST on the Road to L2 December 31, 2021

Credit & Copyright: Malcolm Park (North York Astronomical Association)

JWST Commissioning Timeline

https://blogs.nasa.gov/webb/

We are here

Example Science Instrument Commissioning Activity

HAT-P-14 b: NIRISS/SOSS Commissioning Target

This massive transiting gas giant is planned as one of the commissioning targets for timeseries observing modes. The transit light curve of HAT-P-14 b collected from two sectors of Transiting Exoplanet Survey Satellite data is shown below, demonstrating the high signal-tonoise of this target (from <u>https://exo.mast.stsci.edu/</u>).

Early Release Science Programs: Time-Series

• <u>https://ers-transit.github.io/</u>

- ERS program will use five instruments/time-series modes to provide a representative set of transiting exoplanet data for giant planets with bright host stars (WASP-39b, NGTS-10b, WASP-18b)
- ERS team held an ERS Pre-Launch Data Hackathon (21-25 June 2021) and ERS Pre-Launch Theory Webbinar (July-August 2021)

L-4 months Exo-Webb Pre-launch Hackathon	L+2 months Exo-Webb Data Challenge: simulated datasets	L+3 Readiness Review, community briefing	L+10 Exo-Webb Data Challenge: actual datasets	L+11 Results Revie science-enabl products deliv community br	ew, ling vered, iefing	L+16 special journal issue publishing results and lessons learned
2021			2022			2023
0 years from launch				1 year after launch		
L+0 months JWST launch and start of commissioning		L+6 ERS/Cycle 1 observing begins	L+11 Cycle 2 call for proposals	L+14 Cycle 2 proposals due		

[PI: Natalie Batalha; Co-PI: Kevin Stevenson, Jacob Bean; Proposal 1366]

Early Release Science Programs: WASP-39b

James Webb Space Telescope

HST and Spitzer transmission spectrum of WASP-39b (Wakeford et al. 2018). Artist's Concept: NASA, ESA, G. Bacon and A. Feild (STScI), and H. Wakeford (STScI/Univ. of Exeter).

Early Release Science Programs: High Contrast Imaging

- <u>https://www.stsci.edu/jwst/science-execution/approved-programs/dd-ers/program-1386</u>
- ERS program will generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities
- Recorded webinar available on the <u>JWST Observer YouTube channel</u>

Representative Datasets in Common Modes

We have synthesized the intentions of our community to identify common observing modes.

Science Enabling Products

- Contrast metrics across all modes for a variety of reduction methods.
- High contrast imaging analysis pipeline, based on pyKLIP (Wang, 15).
- Aperture masking analysis pipeline.
- PSF Library (in combination with GTO programs).
- Theoretical exoplanet atmosphere and evolutionary models + atmospheric retrieval package.
- Analysis of best practices distributed via STSci Webcast Briefings.

[PI: Sasha Hinkley; Co-PI: Andrew Skemer, Beth Biller; Proposal 1386] [image from webinar given by Sasha Hinkley]

ERS target HD 14159A (Konishi et al. 2016 / HST STIS)

Sample Cycle 1 GTO/GO Transiting Exoplanet Targets

A subset of JWST Cycle 1 transiting exoplanet targets is shown below, illustrating particularly the population of small, cool planets to be observed in either transit, or eclipse, or at both phases.

Paving the Way for a Large IR/O/UV Space Telescope...

- The successful launch and deployment of JWST is a great feat of engineering.
- JWST will revolutionize our understanding of what exoplanets (and disks) are made of thanks to its infrared sensitivity.
- HST programs that support JWST science demonstrate the need for precision UV and optical observations to continue for years to come. For example, HST Cycle 29 programs will observe a set of JWST Cycle 1 transiting exoplanet host stars in the UV to assess atmospheric formation and retention, stability, and chemistry (e.g., PI: Allison Youngblood/16701 and PI: Hannah Diamond-Lowe/16722).

Recent and Upcoming Events

STScl JWebbinars

https://www.stsci.edu/jwst/science-execution/jwebbinars Many, including one on time-series observations

Transiting Exoplanet Community ERS Events ers-transit.github.io

Pre-Launch Data Hackathon June 2021

Theory Webbinar July-August 2021

Data Challenge

March 2022 Details TBA

AAS JWST Town Hall Postponed to January 28, 2022 Details TBA

Go Webb!

https://blogs.nasa.gov/webb/

Credit: (NASA/Chris Gunn)