

Exoplanet Exploration Program Technology Update

Brendan Crill Deputy Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Nicholas Siegler Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Pin Chen

Deputy Technology Development Manager Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

> ExoPAG 24 24 June 2021

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged. Cleared for public release CL#21-3088 Image Credit: NASA/Ames/JPL-Caltech/T. Pyle astropix.ipac.caltech.edu

Current Technology Activities

Technology Gaps

Strategic Astrophysics Technology (SAT) Grants

- Coronagraph architectures: modeling and demonstrations
- Wavefront control
- Extreme Precision Radial Velocity Public Engagement

Detectors

Ultra-Stable Coronagraph Testbeds

Nulling Interferometry Study

Extreme Precision Radial Velocity

Deformable

Starshade Technology Development

Segmented Coronagraph Design & Analysis Study

MATTHEW NOYES

Roman/CGI

10 Currently Active Strategic Astrophysics Technology (SAT) Awards

Coronagraph masks/architectures

- Vortex Coronagraph (Serabyn/NASA-JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (Belikov/NASA-ARC)
- Super-Lyot Coronagraph (Trauger/NASA-JPL)
- Apodized Pupil Lyot Coronagraph (Soummer/STScI)

Wavefront-control techniques

- Single mode fiber and optimization for spectroscopy (Mawet/Caltech)
- Linear Dark Field Control (Guyon/Arizona)
- Multi-star Wavefront Control (Belikov/NASA-ARC)

Detectors

- Vis-band rad-hard photon-counting detectors (Rauscher/NASA-GSFC)
- Ultra-stable mid-IR detector array (Staguhn/JHU)

Extreme Precision Radial Velocity

 Micro-resonator optical etalon for radial velocity measurements (Vasisht/NASA-JPL)

Segmented Coronagraph Design & Analysis Study

- Purpose:
 - Coronagraph feasibility with segmented-mirror telescope
 - Coronagraph/segmented telescope system feasibility
- Preliminary end-to-end modeling of telescope dynamics, wavefront control, and coronagraph -> science yield
- Close collaboration with Ball and Lockheed telescope modeling
 - Reconfirmed requirement for ~10 pm WFE stability, per LUVOIR report

RMS Amplitude [pm]	Yield Loss (compared to no aberration)
3	0%
10	2%
100	92%

Next Steps:

- Understanding benefits of wavefront control techniques with both natural and laser guide stars
- Study further damping of telescope modes that most impact the science yield
- Pursuing higher fidelity Integrated Telescope-Coronagraph modeling

Deformable Mirror Survey

- Goal: Survey and document viable DM technologies across the world to inform future exoplanet missions of their capabilities and technology readiness → Completed in May 2021
- Looked at 14 candidates in 6 countries:
 - Xinetics and BMC are currently the best options – ALPAO is a backup candidate
 - New promising technology identified (Microscale, Obsidian, SLM)
- Recommended next steps:
 - Develop high actuator count devices
 - Advance DM electronics and connectorization
 - Develop backup technologies
 - Continue to revise DM survey
 annually

	вмс	Xinetics	ALPAO	Cilas
Technology	Electro static force between pin and membrane	Electrostrictive (PMN) material	Electromagnetic	Bimorph piezoelectric actuation
Control type	Voltage	Voltage	Current	Voltage
Membrane contact	None	Yes	None	Yes
Actuator pitch	0.3 - 0.45 mm	1.0 - 2.5 mm	0.8 – 20.6 mm	≥ 2 mm
Actuator stroke	1 to 2 µm	0.5 µm	8 – 25 µm	20 µm (OTOS)
Actuator count	4096 (64x64)	4356 (66x66)	3228 (64 across)	188(OTOS has 63)
Capability	Up to 9216 (96x96)	Up to 9216 (96x96)	Up to 12912 (128 across)	Few hundreds
Actuator resolution	15 pm	20 pm measured	120 pm	~300 pm
Capability	15 pm	8 pm	15 pm	50 pm
Key limitations for flagship mission	Surface Quilting, actuator count	Actuator pitch, stability	Actuator pitch	Actuator count, pitch and resolution
Company information	U.S. Based DMs are the main business Independent company	U.S. Based DMs are the main business Parent: Northrop Grumman, strategic business unit	France DMs 70% of \$4M revenue Parent: Eveon	France DM's 10% of revenue Ariane group and AREVA

• Look for an ExEP Technology Colloquium on this topic coming soon

Eduardo Bendek (Study Lead)

Starshade Technology Activity

Angelle Tanner, MSU

Starshade Data Challenge launched: all synthetic images released to two challenge teams¹

Brian Dunn, Quartus Engineering

Optical Modeling: 4000 All variant subscale starshades of for model validation built 4000 And measured at Princeton 4000 testbed 4000 All validation built 4000 All validation

Special section on starshades published in April 2021 issue of JATIS²

Improved error budgeting, Revisiting earlier results: e.g. petal optical edge bonded joint redesign Edge before redesign

Edge after redesign

¹see them for yourself at <u>https://exoplanets.nasa.gov/exep/technology/starshade-data-challenge/</u>

² at <u>https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-7/issue-02</u>

Exoplanet Exploration Technology Colloquium Series

 The Past, Present, and Future of Nulling Interferometry Gene Serabyn (JPL)

 Ground-based Coronagraphy plus High-Resolution Spectroscopy Nem Jovanovic (Caltech) and Arthur Vigan (LAM)

- Recordings and slides available:
 - <u>https://exoplanets.nasa.gov/exep/technology/tech_colloquium/</u>

Astro2020 and ExEP Technology

• ExEP's technology priorities flow from recommendations in the Decadal Survey and NASA's implementation plans

- Planning underway to align ExEP (and PCOS/COR, HQ) technology activities with recommendations in the 2020 Decadal Survey
 - Astrophysics Technology Gap list update to support the SAT 2021 call for proposals
 - Analyses of the decadal survey recommendations
 - o "Dot product" assessment of current investments vs. recommendations of Astro2020
 - Input to HQ on competed/directed technology

2021 APD Technology Gap List

- NASA EXOPLANET EXPLORATION PROGRAM
- Technology Gap List update this year will be responsive to Decadal
 - Prioritization will be adjusted to reflect mission priorities from Decadal
 - We are prepared to add new technology gaps
- We are now accepting new technology gaps from the community
 - Will be considered for prioritization
 - Due date is 3 weeks after release of Decadal Survey report
 - Astrophysics Technology Gap List update schedule is driven by plans for SAT 2021
- Stay tuned for the SAT 2021 call..

n 2021, the deadline to submit technology gaps is extended until three weeks after the Astro2020 release date.

Technology Capability Gap Name:		Date Submitted:
Submitter Name:	Organization:	
Telephone:	Email Address:	
Prioritization Information (s	see accompanying instruct	ions)
Identify Strategic Missions Enhar	nced or Enabled by Closing this	Technology Gap:
□ HabEx □ LUVOIR □ Lyn reference where it is mention	x Origins IP SOF	IA 🛛 Other (write in below the mission name ar
Brief Description of the Technolo	ogy Capability Needed (100 – 15	0 words):
Assessment of the current State-	of-the-Art (SOTA) and reference	S Estimated TRI of full solution addressing
justifying full-solution TRL quote	ed at right (100 - 150 words):	all key performance parameters of this gap:
Technical Goals and Objectives (H	Key Performance Parameters) to	p Fill the Capability Gap:
Scientific Engineering and /or Pr	ogrammatic Renefite (100 - 15)) words):
scientine, angineering and/or ri	ogrammatic benents (100 - 15	, words).
Applications and Potential Releva	ant Missions for Astrophysics D	ivision:
Urgency:		
Warman an antimate d laws at an ath-	er schedule driver:	
rears to estimated launch or othe	er senedure univer.	

https://exoplanets.nasa.gov/internal_resources/1185

BACKUP

Technology Gap List

Astrophysics Technology Gap List

- Technology gaps for all three NASA Astrophysics Division (APD)'s programs
- Database of technology activities:
 - o http://astrostrategictech.us/
- Update coming in 2021, post-decadal

Exoplanet Technology Gap List

- Subset of APD gap list corresponding to exoplanet science:
 - o <u>https://exoplanets.nasa.gov/exep/technology/gap-lists/</u>

Starshade Technology Activity

- Starshade Data Challenge launched, all synthetic images released to two challenge teams¹
- Special section on starshades published in April 2021 issue of JATIS²
- All variant masks for contrast optical model validation built and ٠ measured at Princeton testbed
- Milestone 6A report on petal thermal deformation revised for final submission to ExoTAC
- Debris disk scattering phase functions added to starshade noise budget
- Secondary solar reflection analysis underway to set requirements on ٠ starshade out-of-plane deformations
- Petal optical edge bonded joint re-designed, and shown to survive ٠ environmental testing.

¹see them for yourself at https://exoplanets.nasa.gov/exep/technology/starshade-data-challenge/

² at https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-7/issue-02?SSO=1#SpecialSectiononStarshades

Angelle Tanner, MSU

Brian Dunn. Quartus Engineering

Mixed perturbation mask

MEMS Deformable Mirrors

- 2000-actuator Deformable Mirror demonstrations in vacuum
 - MEMS DM narrowband demo in Decadal Survey Testbed contrast 8×10^{-10} from 3.5 to 13.5 λ /D narrowband at 516 nm; 2×10^{-9} 10% band

- Two 2000-actuator MEMS DM's to undergo launch-level vibrations
 - one not coated (to allow IR microscopy)
 - one coated
 - Pre-test performance characterization underway
- Next step: expose devices to random vibe

S5: Closing Starshade Technology Gaps

https://exoplanets.nasa.gov/exep/technology/starshade/

V-NIR Coronagraph/Telescope Technology Gaps

Contrast

CG-2: Coronagraph Architecture

CG-3: Deformable Mirrors

CG-4: Data Post-Processing

Angular Resolution

CG-1: Large Monolith Mirrors

> CG-1: Segmented Mirrors

Contrast Stability

CG-5: Wavefront Sensing and Control

CG-6: Mirror Segment Phasing

CG-7: Telescope Vibration Sensing and Control or Reduction

Detection Sensitivity

Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

Other Technology Gaps

UV Contrast

CG-10 UV/V/NIR Mirror Coatings

UV Detection Sensitivity

CG-12: Ultra-low Noise UV Detectors

Stellar Reflex Motion Sensitivity

M-2: Laser Frequency Combs for Space-based EPRV

M-1: Ground-based Ultra-high Precision Radial Velocity

M-3: Astrometry

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy

Mid-IR Technology Gaps

Mid-IR Coronagraph Contrast

CG-10 UV/V/NIR Mirror Coatings

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy