The Keck Planet Imager and Characterizer:

A R. Ca. A.A.

Nemanja Jovanovic on behalf of the team ExEP science meeting 17th June 2021

KPIC Team

Caltech:

- D. Mawet (PI), N. Jovanovic(Co-PI), J. Wang, D. Echeverri, J. Llop, K. Matthews, J. Pezzato, B. Calvin,
- T. Schofield,
- J.-B. Ruffio

Arcetri:

- C. Plantet,
- S. Esposito

Subaru:

O. Guyon

ANU:

F. Rigault

WMKO.:

- P. Wizinowich(PI), J.-R. Delorme, S. Cetre, S. Lilley, S. Ragland, C. Alvarez, E. Wetherell

UCLA:

M. Fitzgerald, E. Wang, K. Magnone, C. Johnson, R. Lopez

LAM:

-- T. Fusco

STFC: C.Z. Bond

JPL:

- J.K. Wallace, R. Bartos, G. Ruane,
- E. Serabyn, G. Vasisht,
- AJ Riggs

Uppsala University:

E. Vargas, P. Forsberg, M. Karlsson

UCSC:

A. Skemer, E. Morris, E. Martin

OSU: J. Wang

University of Liege:

- O. Absil,
- E. Huby,
- B. Carlomagno,
- C. Gomez,
- A. Jolivet,
- J. Surdej,
- S. Habraken,
- C. Delacroix

University of Hawaii:

- M. Chun(Co-PI),
- C. Baranec,
- M. Bottom,
- D. Hall,

HEISING-SIMONS

UNDATION

- D. Atkinson,
- S. Goebel,
- C. Lockhart,
- E. Warmbier

Science goals

Science motivation

Two key science themes:

- 1. Direct imaging of exoplanets to detect and improve photometry and astrometry
- 2. Spectral characterization of exoplanets R>30k

By Jason Wang, et al - https://www.youtube.com/watch?v=KVgKidAuf4o

Ji Wang et al. 2018

Motivation for high resolution spectroscopy

Courtesy of J.-B. Ruffio

High Dispersion Coronagraphy (HDC)

Proposed by Sparks and Ford, Riaud & Schneider 2007, and Snellen et al 2015

See Wang et al 2017 & Mawet et al 2017

The Instrument and Status

Keck II adaptive optic system

Facility instruments:

- NIRC2: High Resolution & high contrast infrared imager (coronagraphic capabilities).
- Nirspec: High Resolution spectrograph (Resolution > 37,000 in K band)

KPIC Block Diagram

KPIC is a series of upgrades to Keck AO, NIRC2 and NIRSPEC.

- NIRC2 K, L, M band vortex masks, new Lyot stop, polarimeter
- Keck AO A NIR Pyramid (Py) WFS, a fiber injection unit (FIU)
- **NIRSPEC A fiber extraction unit (FEU)** • to enable NIRSPEC to run diffraction limited

Planet Imager/Finder Mode

Key points:

• Will be facilitized.

Goals:

• Detect & image low mass companions.

Keck Infrared Pyramid (Py) WFS

SAPHIRA: infrared avalanche photodiode array

- High frame rate (1.5kHz).
- Low noise (<1e).

- Sensor wavelength: H-band
- 40 pixels across the pupil
- Correction:
 - Phase 1: 21x21 Keck DM
 - Phase 2: 32x32 Mems DM
- Real time control: CACAO

Planet Imager/Finder Mode

Key points:

- PyWFS is routinely outperforming the Shack Hartmann
- Achieving Strehl approaching 90% in L band

L-band image, H = 2.35

K-band PSF, H = 6.2 SR = 60%

Planet Characterizer Mode

Planet Characterizer Mode

Fiber Bundle

Input side of the bundle

Input connector

Dummy Fibers

NIRSPEC

Key points:

- High resolution spectroscopy over the wavelength region 0.95 to 5.4 microns
- K band resolution: $\approx 37K$
- Modified to be fiber fed (single mode fibers)

Step 1: Star Acquisition Close AO Loop

Step 2: Retro Feed Calibration Fibers

Step 3: Science Fiber Positions

Step 4: Optimize Star Light Injection

Step 5: Blind Offset to Planet Position

Requires accurate knowledge of the

- Plate scale
- Orientation and
- Distortion map

Step 6: Compensating DAR

- Keck has no Atmospheric dispersion compensator
- Need to offset pointing to compensate for offsets between the tracking and science bands

Raw detector images (HR 8799)

Overall Throughput of the System

Throughput measured on Kappa And (July 3rd 2020 – Elevation 64.6°)

- ~40% injection/propagation efficiency (other losses include sky, telescope, Keck AO, optics, NIRSPEC)
- Throughput is similar to NIRSPAO

Data products

Preliminary reductions exist for all the data on a Caltech machine (hcig1) 1D spectra, Line width, & wavelength calibration

Delorme et al, in review Courtesy of J.-B. Ruffio and J. Wang

HR8799 bcde detections

First detections of HR 8799 d & e at R > 10,000 2x better detection of HR 8799 c with 4x less time than NIRSPAO

Wang et al 2021, in review

A survey is underway

On-going survey:

- ~20 companions detected
- Additional 12 nights already scheduled in 2021

KPIC Phase I

KPIC phase I modules implemented :

- NIRC2 : K, L, M band vortex masks, new Lyot stop and a polarimeter
- Keck AO : A NIR Pyramid PyWFS and a fiber injection unit (FIU), Zernike WFS
- NIRSPEC : A fiber extraction unit (FEU)

KPIC-FIU Timeline

KPIC-FIU Phase #1 – Currently on Sky

2015 -- KPIC white paper December 2017 -- Design Review September 2018 -- KPIC install at Keck November 2018 -- First light without NIRSPEC January 2019 -- First stellar spectra May 2019 -- First Science night Since May 2019 -- 20+ science targets observed

KPIC-FIU Phase #2 – Work in progress

May 2019 -- Design Review Summer 2021 -- Lab integration Winter 2021 -- Installation at Keck

Next Steps for KPIC

Phase II upgrades

Increase planet throughput and suppress star light

High-order DM – 1k BMC

Atmospheric dispersion compensator (ADC)

Beam shaping optics (PIAA)

Fiber nulling coronagraph

FIU Phase II upgrades

Near final CAD of the phase II plate

Images from integration

PyWFS pickoff mechanism ADC mechanism

Coronagraph mechanism

OAP alignment

High Order Deformable Mirror

Purpose: enhanced wavefront control

- More actuators and faster response time for better PyWFS correction &
- For advanced focal plane wavefront control techniques

Custom CaF2 Window Throughput >97% H, K, L and M single pass

Phase Induced Amplitude Apodization

Key points: Improve the light injection into SM fiber

KPIC PIAA design

Design courtesy of Garreth Ruane

KPIC PIAA concept

On-sky demo conducted on SCExAO: Jovanovic et al, A&A, 2017

First Batch of KPIC PIAA Lenses

Measured injection gain

Lab results for KPIC optics: Calvin et al, PASP, 2021

Coronagraphs

Key points:

- Two types of coronagraphs: apodizer and a vortex in the vortex fiber nulling (VFN) mode.
- The apodizer will reduce leaked starlight into the fiber.
- The VFN will enable detection and spectroscopy of exo-planets at or within $1.5\lambda/D$.

Without Apodizer With Apodizer Pupil Plane Focal Plane

KPIC Apodizer Concept

Apodizer and vortex currently tested at Caltech

Vortex fiber nulling concept

Echeverri et al. Opt. Lett. 44 (2015) Echeverri et al, SPIE, 11117-33 (2019) & Ruane et al, SPIE, 11117-43 (2019)

Vortex Fiber Nulling

Key points:

- Planet throughput with charge 1 vortex mask can be as high as 20% at 0.8 lambda/D.
- 25% when combined with PIAA optics
- Assuming 1 mas tip/tilt residuals at Keck (3x improvement from the current performance), with a charge 1 vortex KPIC could directly characterize 20 previously uncharacterizable giant planets!!!

Echeverri et al in prep.

Advanced wavefront control

Key points:

- Predictive control on the PyWFS this will bring large gains in performance (McEwen et al. AAS, 233 (2019)).
- Speckle nulling in the focal plane through the fiber (Sayson et al JATIS, 5, 2019) to further suppress the unwanted starlight. Reduction in speckle noise floor by a factor of 2-3 even with static NCPA compensation (Mawet et al. AJ, 838 (2017)).
- Kalman filtering to implement the focal plane wavefront control.

Mawet et al. AJ, 838 (2017)

Zernike Wavefront Sensor

Key points: Measure primary mirror co-phasing error

Segmented DM – with ZWFS – Lab data

Looking to future missions

LUVOIR/HabEx

Key points:

- LUVOIR and/or HabEx should include point spectrographs fed by SMFs to enable HDC
- This characterization tool nicely compliments the IFS detection tool.

Pushing SMF WFC

Key points:

- Pairwise probing/EFC through a SMF has been demonstrated in the lab Caltech ETL
- With an unoptimized testbed and a vortex coronagraph, we've demonstrated >10⁻⁵

Llop-Sayson et al. JATIS, 2019

Pushing SMF WFC

Key points:

- Pushed the contrast in a high-performance testbed HCST Caltech •
- Funded through a NASA SAT TDEM
- **First 2 milestones achieved** •
 - 10⁻⁸ contrast at 780 nm in 1% polychromatic light
 - 3x10⁻⁸ contrast at 780 nm in 20% polychromatic light •

-5 -5.5

-6

-6.5 -7

-7.5

-8

Pushing SMF WFC

-7

-8

-9

-10

-11

-12

200

Contrast

Questions?

For further information:

email: nem@caltech.edu or dmawet@astro.caltech.edu