Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

ORTH CAROLINA at CHAPEL HILL

M < 0.6 M⊙

T < 3800 K

E.g. TRAPPIST-1, **Proxima Centauri**

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

M-Dwarfs

Image credit: NASA/JPL-Caltech/Spitzer

M < 0.6 M⊙

T < 3800 K

E.g. TRAPPIST-1, **Proxima Centauri**

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

M-Dwarfs

•

SUN

Low-mass star

Brown Dwarf

Jupiter

Earth

тоо нот

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

Habitable Zone

JUST RIGHT

TOO COLD

Planet size: 1-2x Earth

Image credit: NASA

Close-in M-dwarf habitable zones => easy to detect Earthlike planets

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC PE

Image credit: ESO/M. Kornmesser

Close-in M-dwarf habitable zones => easy to detect Earthlike planets

Complication: Flares

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

Image credit: ESO/M. Kornmesser

M-dwarfs are typically active flare stars

Flares affect planetary habitability

Image credit: David A. Aguilar (CfA)

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE M-Dwarf Flares

More powerful flares => greater impact

Most powerful flares: "Superflares"

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

ORTH CAROLINA at CHAPEL HILL

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

Stellar flares with energy $E \ge 10^{33}$ erg

Common for M dwarfs

Bright enough to see easily from Earth

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC
 PE

Superflares

Image credit: NASA GSFC/S. Wiessinger

Superflares

High-energy particles can follow superflares

Particles interact with planetary atmospheres

Image credit: NASA/ESA/L. Calçada

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

Exo-Aurorae

High-energy particles can follow superflares

Particles interact with planetary atmospheres

Image credit: NASA

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Image credit: NASA

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

EXO-Aurorae

Oxygen: characteristic green aurorae of Earth

Bright emission @ 5577 Å within hours of flare => exo-aurorae

Image credit: NASA

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

Exo-Aurorae

Oxygen: characteristic green aurorae of Earth

Bright emission @ 5577 Å within hours of flare => exo-aurorae

Image credit: NASA

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

EXO-AUrorae

Luger et al. (2017): exo-aurorae from M-dwarf planets may be detectable

Figure 3. Simulated high-resolution visible spectrum of Proxima Cen b with a 0.1 TW O I auroral emission at 5577 Å. A gray geometric albedo of 0.3 is assumed for the planet. The spectrum is calculated at quadrature phase and scaled to the observing distance (1.302 pc).

Oxygen: characteristic green aurorae of Earth

Bright emission @ 5577 Å within hours of flare => exo-aurorae

Image credit: NASA

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC PE

Exo-Aurorae

Luger et al. (2017): exo-aurorae from M-dwarf planets may be detectable

Challenge: Actually finding such an event

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

SOAR (Southern Astrophysical Research) Telescope EVRYSC PE

- Cerro Pachon, Chile
- 4.1 m, optical + near IR
- Goodman High-Throughput **Spectrograph:**
 - Gratings 400-2400 L/mm (R ~ 1850-14000)
 - For more details, see Clemens et al. (2004)

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

21

Observing with SOAR

- SOAR nights allocated to UNC, split among research groups (~few per group per term)
- Variety of targets observed for diverse science cases in group
- Observations fully remote, facilitated by operators at CTIO

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Observing with SOAR

- SOAR nights allocated to UNC, split among research groups (~few per group per term)
- Variety o But first, we need to find flares.

 diverse science cases in group
- Observations fully remote, facilitated by operators at CTIO

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

Amy Glazier, UNC Chapel Hill

Collaborators: Nicholas Law (PI), Hank Corbett, Ward Howard, Alan Vasquez Soto, Ramses Gonzalez, Nathan Galliher, Jeff Ratzloff

ExoExplorers Webinar — 03/12/2021

of NORTH CAROLINA at CHAPEL HILL

The Evryscopes

Evryscope-South:

- Cerro-Tololo Inter-American **Observatory, Chile**
- **Deployed in 2015**

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

Evryscope-North:

- Mount Laguna Observatory, California, USA
- **Deployed in 2018**

Evryscope-South

Technical specifications:

- 22 cameras
- **Plate scale = 13 arcsec/pixel**
- Cadence $= 2 \min$
- Limiting mag. \approx 16 in Sloan g'
- 8150 sq. deg. field of view

EVRYSCOPE

For more details, see Ratzloff et al. 2019

Evryscope Fast Transient Engine

Subtract images taken in same pointing in real time

Automatically identify transient candidates for rapid follow-up

For more details, see Corbett et al. (2020)

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC PE

Detectior

Satellite

Superflare

Variable star

EVRYSC PE

DISCLAIMER: direct detection is unlikely

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

DISCLAIMER: direct detection is unlikely

...but we will get upper limits to inform future surveys.

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Evryscope

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

Planets need not be transiting: can detect or characterize new planets

Rapid follow-up: can capture flare astrophysics in early stages of flare

Flexible enough to switch to high-res mid-flare: can start in low-res for overall flare astrophysics, then switch to high-res for aurorae

Evryscope

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC PE

Not limited to known planet hosts: any flaring M-dwarf is good

One of our first flares!

- February 14, 2020
- Early-to-mid M-dwarf
- On target within 15 minutes

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSCOPE

Reference Science Difference

- November 24, 2020
- Non-flaring star, M-dwarf binary
- Higher resolution spectrum shows more promise – maybe even higher resolution necessary
- **Currently awaiting dark nights!**

Superflares affect M-dwarf exoplanets' habitability – and associated particle events can induce exo-aurorae

Evryscope superflare detections + rapid spectroscopic follow-up unlock capabilities for detecting exo-aurorae

Questions?

Amy Glazier aglazier@unc.edu

Constraints on Post-Superflare Exo-Auroral Emission with SOAR and the Evryscope Fast Transient Engine

EVRYSC PE

