Don't Heckle My Speckle: A Coronagraph Design Study for the SEAL testbed

Jules Fowler . ExoExplorer Seminar Series . 5/14/21

Talk Outline

- Extreme Adaptive Optics
- SEAL testbed
- Optics refresher
- Coronagraphy primer
- Simulations
- Current state of the coronagraph design
- Next steps

Direct Imaging and Extreme Adaptive Optics

Directly Imaged Planets are Few and Far Between

Directly Imaged Planets are Few and Far Between

Direct Imaging Resolves the Light of a Planet

HR8799 Planetary System

6

Direct Imaging Unlocks Exoplanet Characterization

HR8799 Planetary System

7

Ground-based Imaging Requires Adaptive Optics

Feedback loop: next cycle corrects the (small) errors of the last cycle

Ground-based Imaging Requires Adaptive Optics

Feedback loop: next cycle corrects the (small) errors of the last cycle

Ground-based High Contrast Imaging Requires **EXTREME** Adaptive Optics

The Lyot Project

HD 95086b and a Speckle are Hard to Distinguish

(Rameau, 2013)

The Santa Cruz Extreme AO Laboratory (SEAL)

SEAL Tests Novel Wavefront Sensing, Wavefront Control, and Coronagraphy in Synergy with Keck

- Part of the UCSC Lab for Adaptive Optics
- PI: Rebecca Jensen-Clem
- Supported by Renate Kupke, Daren Dillon, and Sylvain Cetre
- Predictive wavefront control (Maaike Van Kooten)
- Focal plane wavefront sensing (Benjamin Gerard)
- Pyramid wavefront sensing (Dominic Sanchez)
- Zernike wavefront sensing(Maaike Van Kooten, soon to be Maissa Salama, and Jules Fowler)
- Coronagraph Design (Jules Fowler)

SEAL Includes ...

SEAL Includes Atmospheric Turbulence Generation

SEAL Includes Keck-like Pupil Shaping

SEAL Includes High/Low Order Deformable Mirrors

SEAL Includes This Very Coronagraph!

Everything You Wanted to Forget About Optics

Pupil and Focal Images are a Fourier Transform Apart

Focal Plane

 $\leftarrow \ \mathcal{F}(f(x,y)) \\ \mathcal{F}^{-1}(F(\theta_x,\theta_y)) \rightarrow$

Natural Units Intuitively Describe the Focal Plane

Airy Rings at $1\lambda/D$ intervals

Diffraction Limited Resolution of a Telescope System:

 $\theta = \lambda/D$

Coronagraphy Basics

Starlight Is Suppressed by a Coronagraph

Star + planet to observe

Starlight Is Suppressed by a Coronagraph

Star + planet to observe

Starlight Is Suppressed by a Coronagraph

Only Starlight is Visible, Despite an Injected Companion

Focal Plane

Starlight is Diffracted to the Edge of the Aperture

Focal Plane

The Planet Appears!

Focal Plane

The Planet Appears!

Focal Plane

Focal Plane Masks Vary for Classical Lyot and Vortex Coronagraphy

Classic Focal Plane Mask

Vortex Focal Plane Mask

Charge-2 vortex

(Delacroix, 2014)

Focal Plane Masks Vary for Classical Lyot and Vortex Coronagraphy

Classic Focal Plane Mask

Vortex Focal Plane Mask

(MarbulaOne, 2020)

Contrast Curves Across the Image Plane are a Coronagraph Performance Metric

Simulating a Coronagraph with HCIPy High Contrast Imaging for Python

github.com/ehpor/hcipy

HCIPy: High Contrast Imaging for Python

Our Simulations Use a Circular Aperture

Keck Aperture

Circular Aperture

Designing a B-Lyot Coronagraph

 $D_{LS}/D_{aperture} < 1 - 1/D_{FPM} : D_{FPM} = 3 \Rightarrow D_{LS} < 0.67$

• Sivaramakrishnan, 2001

Designing an A+ Vortex Coronagraph

We expect to see no contrast difference past a certain threshold (~0.98).

Wavefront Error from Imperfect Optics Creates Speckles

High Order WFE

Realistic WFE

Wavefront Error Impacts Contrast, Especially for the (low charge) Vortex

39

Wavefront Error from Impacts the Final Coronagraphic Image

Perfect vortex:

Vortex with

Typical Vortex Masks are Imperfect

Imperfect Vortex Masks Impact Contrast

Atmosphere Imparts Phase Errors But Can be Corrected with Deformable Mirrors

No Correction 50 Actuators

Kilo DM

Atmosphere Imparts Phase Errors But Can be Corrected with Deformable Mirrors

No Correction 50 Actuators

Kilo DM

Current State of the Design

Large FPM Allows for Larg(er) Lyot Stop

Optimal Vortex Will be Difficult to Integrate and Align: Lyot Stop $0.98 \rightarrow 0.9$

Optimal Vortex Will be Difficult to Integrate and Align: Lyot Stop $0.98 \rightarrow 0.9$

Next Steps

- Incorporate cost function to minimize exposure time as secondary metric
- Model and design additional elements, including a pupil mask optimized for Keck-like apertures and an apodizing phase pattern we could apply with Deformable Mirrors
- Simulate and design a preliminary Lyot Coronagraph for the Thirty Meter Telescope (TMT)
- Use our setup to compare predictive wavefront control methods side-by-side

Acknowledgements

Many thanks to ExEP and the ExoExplorers program, the UCSC Lab for Adaptive

Optics, Becky Jensen-Clem, Maaike Van Kooten, Ben Gerard, Anand

Sivaramakrishnan, Gary Ruane, Renate Kupke, and Daren Dillon, and the other grads at UCSC.

In Conclusion

- Lyot Coronagraphs: stand up well to system errors but rule out close in companions.
- Vortex Coronagraphs: on paper offer stunning performance but don't hold up as well to practical systems.
- Other coronagraphic elements and algorithms will be vital for high contrast, and practical integration will bring other affects we haven't yet thought to model.
- Feel free to contact me with any further questions (or heckling):

