

Starshade Science and Industry Partnership

Telecon #14

NASA Exoplanet Exploration Program

Renyu Hu

May 20, 2021

Telecon Agenda

- Introduction Renyu Hu
- Experimental investigation of the starshade prototype petal creep behavior – Gregg Freebury, JoAnna Fulton, Darin Brubaker, Tendeg, LLC
- Perspective of the technology and science working group –
 Simone D'Amico
- Open Floor for Discussion

Motivation for Starshade Science and Industry Partnership

The purpose of the Starshade SIP is to maximize the technology readiness level of starshades to enable potential future exoplanet science missions.

- Starshades (or External Occulters) are one of the starlight suppression technologies for high contrast imaging of exoplanets and are baselined for large- and probe-class mission concept studies funded by the NASA Astrophysics Division for submission to the Astro2020 Decadal Survey.
- The Astrophysics Division authorized the Exoplanet Exploration Program
 (ExEP) to execute a directed technology development activity to
 advance starshades to Technology Readiness Level (TRL) 5.
- The Starshade Technology Development Activity to TRL5, or S5, follows an approved Technology Development Plan with technology milestones that respond to documented mission performance requirements.
- The ExEP recognizes that robust and impactful technology maturation requires ongoing consideration of new technology approaches and new mission concept drivers.

https://exoplanets.nasa.gov/exep/technology/starshade/

atmospheres of those planets.

ExoTAC Review of #1A. #1B

S5 Technology Milestones Scorecard

Complete June 2020

Complete June 2023

Starlight Suppression

1A

Contrast BB 1B

Modeling

Scattered Sunlight

Edges

Formation Flying

Sensing

Critical Features

Shape Accuracy

Petal 5A

Truss Bay

7A

Inner Disk 7C

Shape Stability

6A

Inner Disk 8A

All Features

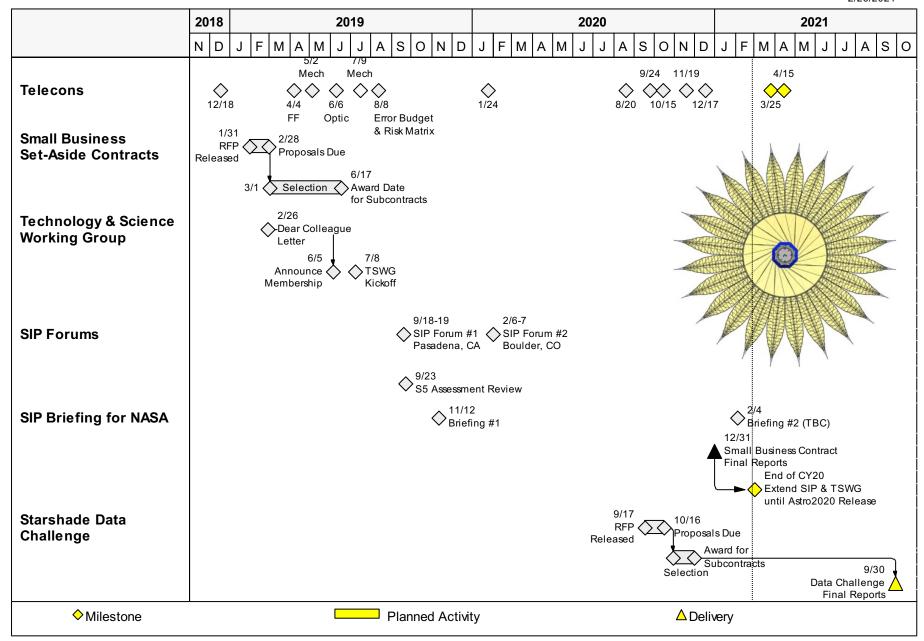
Petal 5B

Truss Bay **7B**

Inner Disk 7D

Petal 6B

Inner Disk 8B


Expected Outcomes of the Starshade SIP

- Identify solutions to challenges faced by the S5 development activity;
- Propose new approaches, techniques, and research beyond planned S5 activities that can maximize starshade technology readiness;
- 3. Document **new mission concept drivers** for starshade technology performance requirements;
- 4. Maintain alignment between S5 technology development activities and future mission needs;
- **5. Facilitate** groups of investigators to communicate research, new technology, and new mission concepts across disciplinary, organizational, and geographic boundaries;
- 6. Enable **continued participation** of the community in NASA's starshade technology development activities.

Starshade Science and Industry Parnership (SIP)

Tier 2 Schedule

2/26/2021

SIP Activities

- SIP Forums #3 and #4 are replaced by a series of SIP telecons
 - Topics from TSWG recommendations and other SIP activities
 - 10am PT on the third or fourth Thursday of each month
- Agenda of SIP telecons
 - Aug: Stray light analyses. Starshade data challenge announcement
 - Sep: Mechanical milestones. Starshade data challenge Q&A
 - Oct: Presentations from ATA and Zecoat
 - Nov: Effects of binary companions and other astrophysical backgrounds
 - Dec: Presentation from Opterus / Roman exoplanet imaging data challenge
 - Mar: JATIS special issue on starshade
 - May: Presentation from Tendeg

Starshade Exoplanet Data Challenge

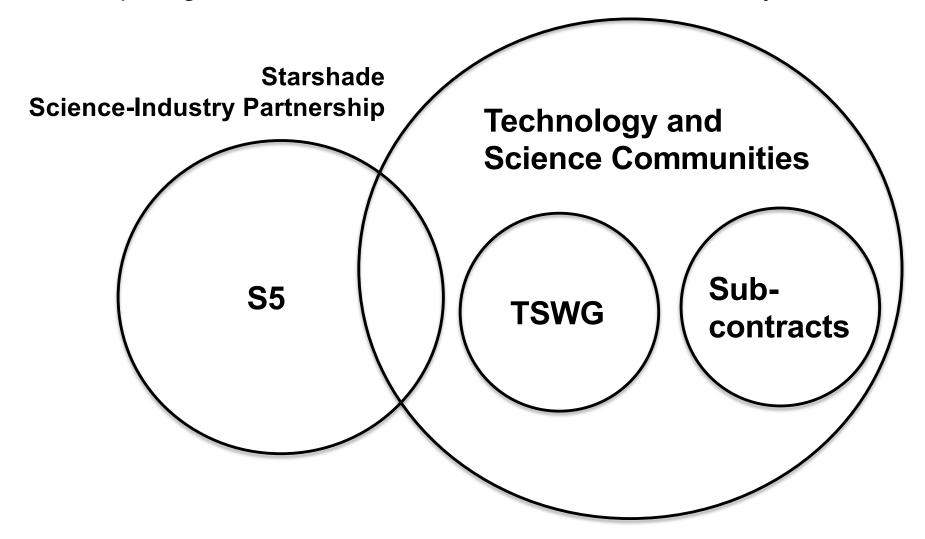
- Objectives of the Data Challenge
 - Validate requirements from science to key performance parameters
 - Quantify the accuracy of calibration of solar glint and exozodiacal light
 - Prepare science community for analyzing starshade exoplanet observations
- Two teams have been selected from submitted responses to a JPL Request for Proposals
- S5 are preparing synthesized images for the data challenge
 - The simulated images include effects of optical edge coating, exozodiacal disk, formation flying variability, and slit/prism spectroscopy
- 1st and 2nd community telecons took place in January and April
 - The 1st and 2nd set of the simulated images made public through a dedicated webpage, along with reference documentations and relevant publications:
 - https://exoplanets.nasa.gov/exep/technology/starshade-data-challenge/
 - A total of 1440 images have been simulated and released to the community
 - Broadband observations with Roman in 425-552 nm and 615-800 nm
 - Nominal and a "worse" starshade (10x contrast, 2x solar glint)
 - Smooth exozodiacal dust density and resonant cloud structures
 - The Data Challenge is open to the general astronomy and exoplanet community

Telecon Agenda

Introduction - Renyu Hu

- Experimental investigation of the starshade prototype petal creep behavior **Gregg Freebury, JoAnna Fulton, Darin Brubaker, Tendeg, LLC**
- Perspective of the technology and science working group –
 Simone D'Amico
- Open Floor for Discussion

Telecon Agenda


- Introduction Renyu Hu
- Experimental investigation of the starshade prototype petal creep behavior – Gregg Freebury, JoAnna Fulton, Darin Brubaker, Tendeg, LLC

- Perspective of the technology and science working group **Simone D'Amico**
- Open Floor for Discussion

Next Steps

Anticipating the outcome of the Astro2020 decadal survey

Post-decadal S5 assessment review to include recommendation of the SIP communities

Closing

Future telecon topics

- Starshade SIP mailing list: Follow instructions at https://exoplanets.nasa.gov/exep/technology/starshade/
- Suggest future topics of discussion to:
 - Gary Blackwood and Renyu Hu
 - Simone D'Amico, Chair of TSWG
- Open the floor for further discussion

Copyright 2021 California Institute of Technology. Government sponsorship acknowledged.

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. © 2020 All rights reserved.

Disclaimer

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Contact Information

Starshade Science and Industry Partnership

- Gary Blackwood, NASA ExEP Manager, Starshade SIP Chair
 - Gary.blackwood@jpl.nasa.gov
 - W: 818 354 6263
 - M: 818 458 0507
- Renyu Hu, ExEP Starshade Scientist
 - Renyu.Hu@jpl.nasa.gov
 - W: 818 354 6090
 - M: 818 281-9459

Program Office – Key Participants

NASA Exoplanet Exploration Program (ExEP)

Science and Industry Partnership

- Gary Blackwood, NASA ExEP Manager, Starshade SIP Chair
- Renyu Hu, ExEP Scientist for Starshade Technology

Starshade Technology Development Activity (S5)

Phil Willems, Manager of S5, LBTI Project Manager

NASA Headquarters Leadership

Astrophysics Division

- Shahid Habib, Program Executive for ExEP
- Douglas Hudgins, Program Scientist for ExEP
- Mario Perez, Division Technology Lead
- Jeff Volosin, Deputy Division Director
- Paul Hertz, Division Director