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Overview 
Starshade design needs fast Fresnel diffraction from hard-edged (“0-1”) 
occulter, evaluated at many (eg 106) target-plane (pupil) points 

• New method: has speed of FFT, but high accuracy of edge-integral 
• 104× faster than edge-integral methods in starshade context 

Today: 

• Explain how works. Ingredients: 
i) areal quadrature: accurate rule for 2D integral over occulter 
ii) “nonuniform FFT”: a black-box software library 

• Test results, demos 

“Efficient high-order accurate Fresnel diffraction via areal quadrature and 
the nonuniform FFT,” A. H. Barnett, J. Astron. Telesc. Instrum. Syst. 
7(2), 021211 (21 pages), 2021. arxiv:2010.05978. 

Code/doc: https://github.com/ahbarnett/fresnaq 

https://github.com/ahbarnett/fresnaq


Fresnel number f :=
R2

λz
∼ 5 to 20 for starshades R = max radius

Is Fresnel approx. good? yes! next term R4

λz3
∼ 10−7 even for scale models

Is scalar approx. good? yes for full scale; not perfect for scale models

Need uoc abs error < 10−6 to model intensity suppression 10−10

Fresnel scalar diffraction setup and task 
Region Ω ⊂ R2 is planar occulter (eg, starshade) 
Unit-amplitude incident plane wave along z-axis: target plane field uoc 

Babinet: uoc(ξ, η) = 1 − uap(ξ, η), ZZ 
1 iπ 

uap(ξ, η) = e λz [(ξ−x)
2+(η−y)2] dxdy

iλz Ω 

λ = wavelength z = downstream dist. 

“0-1” source func. convolved w/ complex Gaussian 
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slow O(n3)
(Miyamoto–Wolf, Dauger,

Cash, Cady, Barnett ’21)

high-order accurate

2D nonuniform FFT

fast O(n2 log n)

(Barnett ’21)

high-order accurate

Define “high-order”: error ≤ C/np for large algebraic order p (eg 10)
or error ≤ Ce−αn exponential n = linear resolution

Overview numerical approaches 
Two usual approaches for apertures/occulters: we propose a third. . . 

(a) uniform 2D grid sampling (b) line integral quadrature (c) high-order areal quadrature
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(Mas, Lo, Junchang et al) 

low-order O(1/n) 
sub-pixel at best O(1/n2) 
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Eg: Ω = rectangle:
product Gauss–Legendre rule

AQ for “arbitrary” geometries?

• get from existing line (edge) integral quadrature rule, via dilation
• union of simple pieces + smooth transformations Jacobean scales wj

• auto-generate from CAD/FEM formats? probably, not attempted

need precise (< 10−6) geometry description; what format?

Areal quadrature over Ω 
AQ is simply set of nodes (xj , yj ), j = 1, . . . , N, with weights wj , so 

ZZ NX 
f (x , y) dxdy ≈ f (xj , yj )wj 

Ω j=1 

should be high-order accurate in N 
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Non-ideal starshades:
• get from existing line (edge) integral quadrature rule, via dilation

fine, but not very efficient, N ∼ 108 too large

• adding/subtracting a variable-width strip region to an ideal one?
• rigid motion of petals + AQs for gluing pieces? Add/sub defects. . .

We need to talk: precise geometry description, noise autocorr. . .

Areal quadrature for starshades 
Easy to build AQ for ideal starshade N ∼ 104–106, err 10−6, 20 lines MATLAB 

High-order interpolation from points giving petal apodization func A(r): 
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complication: A(r) from optim design (eg NI2) rippled, A00(r) bang-bang! 
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Recommended software library for NUFFTs: FINUFFT
http://finufft.readthedocs.io

C++/OpenMP; beats others by 10×(Barnett et al ’19)

The fast algorithm: factorization 
For all targets k = 1, . . . , M, eval. quadrature rule for Frensel integral: 

apuk ≈ 
1 
iλz 

NX iπ [(ξk −xj )2+(ηk −yj )2]e λz wj 

j=1 

= 
1 iπ (ξ2+η2)e λz k k 

iλz 

N � �X −2πi iπ 2 2(ξk xj +ηk yj ) (x +y )j j· e λz e λz wj 

j=1 

% ↑ -
iii) post-multiply ii) 2D “type 3 NUFFT” i) pre-multiply 

Three sequential steps (very simple, core < 10 lines of MATLAB) 

Cost O(N + M + f2 log f) In practice: 107 targets/sec on laptop 

If targets on regular grid, use (faster) type 1 NUFFT Abbrev by “t3” and “t1” 

http://finufft.readthedocs.io
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Speed against BDWF, for million-point target grid: i7 laptop

Conclusions: same accuracy reached, 3–5 orders of magnitude faster

Performance & validation for ideal starshades NI2, HG 
Validation vs edge-integrals: (Cady ’12; BDWF as pulled from SISTER codebase) 
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Conclusions: same accuracy reached, 3–5 orders of magnitude faster 



Results pictures 
Smooth kite test: NI2 ideal starshade: 



Replacing BDWF by t3 in SISTER “PSF basis” task: hack, proof-of-principle

• 3149 shifts of 16× 16 pupil grids → group targets together!
• reduces run-time from 6.5 hours to 2.6 seconds

Wavelength sweeps & SISTER modifications 
Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop 
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Movie (analytic starshade design) 
Computed at around 10 frames/sec (close to real time): 



Fun demo of complicated geometry 



Future / questions:
• non-ideal (notches, shape variation) started (Dumont, Shaklan)

• continuous phase variation? trivial to include
• probably useful for other “0-1” design problems: coronagraphs, etc

Code/docs: MATLAB, including all figures from paper, and SISTER modifications

https://github.com/ahbarnett/fresnaq

Conclusions 
Much faster method for accurate (< 10−6) hard-edged Fresnel diffraction 

∼ 107 pupil plane targets/sec, almost indep of starshade geom 

excels for large # targets. Crossover vs edge-integral for NI2 starshade: ∼ 50 targets 

• needs good (high-order) areal quadrature for occulter shape 
— can be built from edge integral quadrature, other ways. . . 
— not automatic from CAD/FEM. What are your formats?. . . 

• didn’t mention: also fixed shadow-boundary issue for edge-integral 

https://github.com/ahbarnett/fresnaq
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