## Fast and accurate Fresnel scalar diffraction for starshade modeling

## Alex Barnett ${ }^{1}$

Starshade Science and Industry Partnership, 3/25/21

Thanks for discussion: David Spergel, Stuart Shaklan, Anthony Harness, Philip Dumont
${ }^{1}$ Center for Computational Mathematics, Flatiron Institute, Simons Foundation

## Overview

Starshade design needs fast Fresnel diffraction from hard-edged ("0-1") occulter, evaluated at many (eg $10^{6}$ ) target-plane (pupil) points

- New method: has speed of FFT, but high accuracy of edge-integral
- $10^{4} \times$ faster than edge-integral methods in starshade context

Today:

- Explain how works. Ingredients:
i) areal quadrature: accurate rule for 2D integral over occulter
ii) "nonuniform FFT": a black-box software library
- Test results, demos
"Efficient high-order accurate Fresnel diffraction via areal quadrature and the nonuniform FFT," A. H. Barnett, J. Astron. Telesc. Instrum. Syst. 7(2), 021211 (21 pages), 2021. arxiv:2010. 05978.

Code/doc: https://github.com/ahbarnett/fresnaq

## Fresnel scalar diffraction setup and task

Region $\Omega \subset \mathbb{R}^{2}$ is planar occulter (eg, starshade) Unit-amplitude incident plane wave along $z$-axis: target plane field $u^{o c}$


Babinet: $\quad u^{\circ \mathrm{c}}(\xi, \eta)=1-u^{\mathrm{ap}}(\xi, \eta)$,
$u^{\mathrm{ap}}(\xi, \eta)=\frac{1}{i \lambda z} \iint_{\Omega} e^{\frac{i \pi}{\lambda z}\left[(\xi-x)^{2}+(\eta-y)^{2}\right]} d x d y$
$\lambda=$ wavelength $\quad z=$ downstream dist.
" $0-1$ " source func. convolved $w /$ complex Gaussian

## Fresnel scalar diffraction setup and task

Region $\Omega \subset \mathbb{R}^{2}$ is planar occulter (eg, starshade) Unit-amplitude incident plane wave along $z$-axis: target plane field $u^{\circ c}$


Babinet: $\quad u^{\circ c}(\xi, \eta)=1-u^{\mathrm{ap}}(\xi, \eta)$,
$u^{\mathrm{ap}}(\xi, \eta)=\frac{1}{i \lambda z} \iint_{\Omega} e^{\frac{i \pi}{\lambda z}\left[(\xi-x)^{2}+(\eta-y)^{2}\right]} d x d y$
$\lambda=$ wavelength $\quad z=$ downstream dist.
" $0-1$ " source func. convolved $w /$ complex Gaussian

Fresnel number $\mathfrak{f}:=\frac{R^{2}}{\lambda z} \sim 5$ to 20 for starshades Is Fresnel approx. good? yes! next term $\frac{R^{4}}{\lambda z^{3}} \sim 10^{-7} \quad$ even for scale models Is scalar approx. good? yes for full scale; not perfect for scale models Need $u^{\circ c}$ abs error $<10^{-6}$ to model intensity suppression $10^{-10}$

## Overview numerical approaches

Two usual approaches for apertures/occulters: we propose a third...
(a) uniform 2D grid sampling

(b) line integral quadrature

(c) high-order areal quadrature


2D FFT (or pair)

## convolution

fast $\mathcal{O}\left(n^{2} \log n\right)$
(Mas, Lo, Junchang et al)
low-order $\mathcal{O}(1 / n)$
sub-pixel at best $\mathcal{O}\left(1 / n^{2}\right)$

## Overview numerical approaches

Two usual approaches for apertures/occulters: we propose a third...
(a) uniform 2D grid sampling


2D FFT (or pair) convolution fast $\mathcal{O}\left(n^{2} \log n\right)$
(Mas, Lo, Junchang et al)
low-order $\mathcal{O}(1 / n)$
sub-pixel at best $\mathcal{O}\left(1 / n^{2}\right)$
(b) line integral quadrature

(c) high-order areal quadrature

direct summation
$u^{\mathrm{ap}}=\frac{1}{2 \pi} \int_{\partial \Omega}\left(1-e^{\frac{i \pi}{\lambda z} r^{2}}\right) \frac{r \times d s}{r^{2}}$ slow $\mathcal{O}\left(n^{3}\right)$
(Miyamoto-Wolf, Dauger,
Cash, Cady, Barnett '21)
high-order accurate

## Overview numerical approaches

Two usual approaches for apertures/occulters: we propose a third...


2D FFT (or pair) convolution
fast $\mathcal{O}\left(n^{2} \log n\right)$
(Mas, Lo, Junchang et al)
low-order $\mathcal{O}(1 / n)$
sub-pixel at best $\mathcal{O}\left(1 / n^{2}\right)$
(b) line integral quadrature

direct summation
$u^{\mathrm{ap}}=\frac{1}{2 \pi} \int_{\partial \Omega}\left(1-e^{\frac{i \pi}{\lambda z} r^{2}}\right) \frac{r \times d s}{r^{2}}$ slow $\mathcal{O}\left(n^{3}\right)$
(Miyamoto-Wolf, Dauger,
Cash, Cady, Barnett '21)
high-order accurate
(c) high-order areal quadrature


2D nonuniform FFT
fast $\mathcal{O}\left(n^{2} \log n\right)$
(Barnett '21)
high-order accurate

## Overview numerical approaches

Two usual approaches for apertures/occulters: we propose a third...
(a) uniform 2D grid sampling


2D FFT (or pair) convolution
fast $\mathcal{O}\left(n^{2} \log n\right)$
(Mas, Lo, Junchang et al)
low-order $\mathcal{O}(1 / n)$
sub-pixel at best $\mathcal{O}\left(1 / n^{2}\right)$
(b) line integral quadrature

direct summation
$u^{\mathrm{ap}}=\frac{1}{2 \pi} \int_{\partial \Omega}\left(1-e^{\frac{i \pi}{\lambda z} r^{2}}\right) \frac{r \times d s}{r^{2}}$ slow $\mathcal{O}\left(n^{3}\right)$
(Miyamoto-Wolf, Dauger,
Cash, Cady, Barnett '21)
high-order accurate
(c) high-order areal quadrature


2D nonuniform FFT
fast $\mathcal{O}\left(n^{2} \log n\right)$
(Barnett '21)
high-order accurate

Define "high-order": error $\leq C / n^{p}$ for large algebraic order $p$ (eg 10)

$$
\text { or error } \leq C e^{-\alpha n} \text { exponential }
$$

## Areal quadrature over $\Omega$

AQ is simply set of nodes $\left(x_{j}, y_{j}\right), j=1, \ldots, N$, with weights $w_{j}$, so

$$
\iint_{\Omega} f(x, y) d x d y \approx \sum_{j=1}^{N} f\left(x_{j}, y_{j}\right) w_{j}
$$



## Areal quadrature over $\Omega$

AQ is simply set of nodes $\left(x_{j}, y_{j}\right), j=1, \ldots, N$, with weights $w_{j}$, so

$$
\iint_{\Omega} f(x, y) d x d y \approx \sum_{j=1}^{N} f\left(x_{j}, y_{j}\right) w_{j}
$$

should be high-order accurate in $N$

Eg: $\Omega=$ rectangle:
product Gauss-Legendre rule


## Areal quadrature over $\Omega$

AQ is simply set of nodes $\left(x_{j}, y_{j}\right), j=1, \ldots, N$, with weights $w_{j}$, so

$$
\iint_{\Omega} f(x, y) d x d y \approx \sum_{j=1}^{N} f\left(x_{j}, y_{j}\right) w_{j}
$$

should be high-order accurate in $N$

Eg: $\Omega=$ rectangle:
product Gauss-Legendre rule


AQ for "arbitrary" geometries?

- get from existing line (edge) integral quadrature rule, via dilation
- union of simple pieces + smooth transformations Jacobean scales $w_{j}$
- auto-generate from CAD/FEM formats? probably, not attempted need precise $\left(<10^{-6}\right)$ geometry description; what format?


## Areal quadrature for starshades

Easy to build AQ for ideal starshade $N \sim 10^{4}-10^{6}$, err $10^{-6}, 20$ lines MATLAB High-order interpolation from points giving petal apodization func $A(r)$ :

complication: $A(r)$ from optim design (eg NI2) rippled, $A^{\prime \prime}(r)$ bang-bang!

## Areal quadrature for starshades

Easy to build AQ for ideal starshade $N \sim 10^{4}-10^{6}$, err $10^{-6}, 20$ lines MATLAB High-order interpolation from points giving petal apodization func $A(r)$ :

complication: $A(r)$ from optim design (eg NI2) rippled, $A^{\prime \prime}(r)$ bang-bang! Non-ideal starshades:

- get from existing line (edge) integral quadrature rule, via dilation fine, but not very efficient, $N \sim 10^{8}$ too large
- adding/subtracting a variable-width strip region to an ideal one?
- rigid motion of petals + AQs for gluing pieces? Add/sub defects...

We need to talk: precise geometry description, noise autocorr. . .

## The fast algorithm: factorization

For all targets $k=1, \ldots, M$, eval. quadrature rule for Frensel integral:

$$
u_{k}^{\mathrm{ap}} \approx \frac{1}{i \lambda z} \sum_{j=1}^{N} e^{\frac{i \pi}{\lambda z}\left[\left(\xi_{k}-x_{j}\right)^{2}+\left(\eta_{k}-y_{j}\right)^{2}\right]} w_{j}
$$

$$
=\frac{1}{i \lambda z} e^{\frac{i \pi}{\lambda z}\left(\xi_{k}^{2}+\eta_{k}^{2}\right)} \cdot \sum_{j=1}^{N} e^{\frac{-2 \pi i}{\lambda z}\left(\xi_{k} x_{j}+\eta_{k} y_{j}\right)}\left(e^{\frac{i \pi}{\lambda z}\left(x_{j}^{2}+y_{j}^{2}\right)} w_{j}\right)
$$

iii) post-multiply
ii) 2D "type 3 NUFFT"
i) pre-multiply

Three sequential steps (very simple, core $<10$ lines of MATLAB)
Cost $\mathcal{O}\left(N+M+\mathfrak{f}^{2} \log \mathfrak{f}\right)$
In practice: $10^{7}$ targets/sec on laptop

If targets on regular grid, use (faster) type 1 NUFFT Abbrev by " t 3 " and " t 1 "

## The fast algorithm: factorization

For all targets $k=1, \ldots, M$, eval. quadrature rule for Frensel integral:

$$
\begin{aligned}
u_{k}^{\mathrm{ap}} & \approx \frac{1}{i \lambda z} \sum_{j=1}^{N} e^{\frac{i \pi}{\lambda z}\left[\left(\xi_{k}-x_{j}\right)^{2}+\left(\eta_{k}-y_{j}\right)^{2}\right]} w_{j} \\
& =\frac{1}{i \lambda z} e^{\frac{i \pi}{\lambda z}\left(\xi_{k}^{2}+\eta_{k}^{2}\right)} \cdot \sum_{j=1}^{N} e^{\frac{-2 \pi i}{\lambda z}\left(\xi_{k} x_{j}+\eta_{k} y_{j}\right)}\left(e^{\frac{i \pi}{\lambda z}\left(x_{j}^{2}+y_{j}^{2}\right)} w_{j}\right)
\end{aligned}
$$

iii) post-multiply
ii) 2D "type 3 NUFFT"
i) pre-multiply

Three sequential steps (very simple, core $<10$ lines of MATLAB)
Cost $\mathcal{O}\left(N+M+\mathfrak{f}^{2} \log \mathfrak{f}\right) \quad$ In practice: $10^{7}$ targets $/ \mathrm{sec}$ on laptop
If targets on regular grid, use (faster) type 1 NUFFT Abbrev by "t3" and "t1"
Recommended software library for NUFFTs: FINUFFT http://finufft.readthedocs.io
C ++ /OpenMP; beats others by $10 \times$ (Barnett et al '19)


## Performance \& validation for ideal starshades NI2, HG

## Validation vs edge-integrals:

(a) NI2 ( $n=192000$ bdry nodes): $\lambda=5 \mathrm{e}-07 \mathrm{~m}, Z=3.72 \mathrm{e}+07 \mathrm{~m}$

(Cady '12; BDWF as pulled from SISTER codebase)
(b) $\quad \mathrm{HG}(n=2048$ bdry nodes $): \lambda=5 \mathrm{e}-07 \mathrm{~m}, Z=8 \mathrm{e}+07 \mathrm{~m}$


## Performance \& validation for ideal starshades NI2, HG

Validation vs edge-integrals:
(Cady '12; BDWF as pulled from SISTER codebase)


Speed against BDWF, for million-point target grid:

| design | $\lambda(\mathrm{m})$ | $z(\mathrm{~m})$ | $\mathfrak{f}$ | $m$ (petal) | total nodes | $M$ (targets) | method | CPU time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NI2 | $5 \mathrm{e}-7$ | 3.72 e 7 | 9.1 | 6000 | $n=192000$ | $10^{6}$, grid | BDWF | 5361 s |
|  |  |  |  | 400 | $N=499200$ |  | NUFFT t1 $\left(\varepsilon=10^{-8}\right)$ | 0.076 s |
| HG | $5 \mathrm{e}-7$ | 8 e 7 | 24 | 60 | $n=2048$ | $10^{6}$, grid | BDWF | 80.5 s |
|  |  |  |  | 60 | $N=37440$ |  | NUFFT t1 $\left(\varepsilon=10^{-8}\right)$ | 0.042 s |

Conclusions: same accuracy reached, 3-5 orders of magnitude faster

## Results pictures

## Smooth kite test:




NI2 ideal starshade:


## Wavelength sweeps \& SISTER modifications

## Shadow depth study, $50 \lambda$ values, takes 6 seconds: including AQ gen; laptop



Fig 6 Intensity ( on $\log _{10}$ scale indicated on the right) as a function of wavelength and target radius $\rho$ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of $200 \rho$ values, the maximum over 300 angles is taken. The indicent intensity is 1 . The NUFFT t 3 method is used. Vertical dotted lines show the designed $\lambda$ range.

## Wavelength sweeps \& SISTER modifications

Shadow depth study, $50 \lambda$ values, takes 6 seconds: including AQ gen; laptop


Fig 6 Intensity ( on $\log _{10}$ scale indicated on the right) as a function of wavelength and target radius $\rho$ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of $200 \rho$ values, the maximum over 300 angles is taken. The indicent intensity is 1 . The NUFFT t 3 method is used. Vertical dotted lines show the designed $\lambda$ range.

Replacing BDWF by t3 in SISTER "PSF basis" task: hack, proof-of-principle

- 3149 shifts of $16 \times 16$ pupil grids $\rightarrow$ group targets together!
- reduces run-time from 6.5 hours to 2.6 seconds


## Movie (analytic starshade design)

Computed at around 10 frames $/ \mathrm{sec}$ (close to real time):


## Fun demo of complicated geometry



Fig 7 Koch fractal aperture diffraction example from Sec. 3.3. (a) shows the areal quadrature constructed by a union of about 67 million triangles. The color of each node $\left(x_{j}, y_{j}\right)$ indicates its weight $w_{j}$ using the scale on the right. The inset shows a zoom into the region shown, resolving individual nodes. (b) shows intensity (on $\log _{10}$ scale indicated on the right) computed on a million-point grid by the NUFFT t 1 method in under 5 seconds.

## Conclusions

Much faster method for accurate $\left(<10^{-6}\right)$ hard-edged Fresnel diffraction
$\sim 10^{7}$ pupil plane targets/sec, almost indep of starshade geom
excels for large \# targets. Crossover vs edge-integral for NI2 starshade: ~ 50 targets

- needs good (high-order) areal quadrature for occulter shape
- can be built from edge integral quadrature, other ways...
- not automatic from CAD/FEM. What are your formats?...
- didn't mention: also fixed shadow-boundary issue for edge-integral


## Conclusions

Much faster method for accurate $\left(<10^{-6}\right)$ hard-edged Fresnel diffraction
$\sim 10^{7}$ pupil plane targets $/ \mathrm{sec}$, almost indep of starshade geom

```
excels for large # targets. Crossover vs edge-integral for NI2 starshade: ~ 50 targets
```

- needs good (high-order) areal quadrature for occulter shape - can be built from edge integral quadrature, other ways... - not automatic from CAD/FEM. What are your formats?...
- didn't mention: also fixed shadow-boundary issue for edge-integral

Future / questions:

- non-ideal (notches, shape variation) started
(Dumont, Shaklan)
- continuous phase variation? trivial to include
- probably useful for other "0-1" design problems: coronagraphs, etc

Code/docs: MATLAB, including all figures from paper, and SISTER modifications https://github.com/ahbarnett/fresnaq

