

Fast and accurate Fresnel scalar diffraction for starshade modeling

Alex Barnett¹

Starshade Science and Industry Partnership, 3/25/21

Thanks for discussion: David Spergel, Stuart Shaklan, Anthony Harness, Philip Dumont

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Overview

Starshade design needs fast Fresnel diffraction from hard-edged ("0-1") occulter, evaluated at many (eg 10^6) target-plane (pupil) points

- New method: has speed of FFT, but high accuracy of edge-integral
- $10^4 \times$ faster than edge-integral methods in starshade context

Today:

- Explain how works. Ingredients:
 - i) areal quadrature: accurate rule for 2D integral over occulter
 - ii) "nonuniform FFT": a black-box software library
- Test results, demos

"Efficient high-order accurate Fresnel diffraction via areal quadrature and the nonuniform FFT," A. H. Barnett, *J. Astron. Telesc. Instrum. Syst.* **7**(2), 021211 (21 pages), 2021. arxiv:2010.05978.

Code/doc: https://github.com/ahbarnett/fresnaq

Fresnel scalar diffraction setup and task

Region $\Omega \subset \mathbb{R}^2$ is planar occulter (eg, starshade) Unit-amplitude incident plane wave along *z*-axis: target plane field $u^{\circ c}$

Babinet:
$$u^{\text{oc}}(\xi,\eta) = 1 - u^{\text{ap}}(\xi,\eta)$$
,
 $u^{\text{ap}}(\xi,\eta) = \frac{1}{i\lambda z} \iint_{\Omega} e^{\frac{i\pi}{\lambda z} [(\xi-x)^2 + (\eta-y)^2]} dxdy$
 $\lambda = \text{wavelength}$ $z = \text{downstream dist}$

"0-1" source func. convolved w/ complex Gaussian

Fresnel scalar diffraction setup and task

Region $\Omega \subset \mathbb{R}^2$ is planar occulter (eg, starshade) Unit-amplitude incident plane wave along *z*-axis: target plane field $u^{\circ c}$

Babinet:
$$u^{\text{oc}}(\xi,\eta) = 1 - u^{\text{ap}}(\xi,\eta)$$
,
 $u^{\text{ap}}(\xi,\eta) = \frac{1}{i\lambda z} \iint_{\Omega} e^{\frac{i\pi}{\lambda z} [(\xi-x)^2 + (\eta-y)^2]} dxdy$

"0-1" source func. convolved w/ complex Gaussian

Fresnel number $f := \frac{R^2}{\lambda z} \sim 5$ to 20 for starshades $R = \max$ radius Is Fresnel approx. good? yes! next term $\frac{R^4}{\lambda z^3} \sim 10^{-7}$ even for scale models Is scalar approx. good? yes for full scale; not perfect for scale models Need u^{oc} abs error $< 10^{-6}$ to model intensity suppression 10^{-10}

Two usual approaches for apertures/occulters: we propose a third...

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ sub-pixel at best $\mathcal{O}(1/n^2)$

Two usual approaches for apertures/occulters: we propose a third...

(a) uniform 2D grid sampling

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ sub-pixel at best $\mathcal{O}(1/n^2)$

direct summation
$$\begin{split} u^{\mathrm{ap}} &= \frac{1}{2\pi} \int_{\partial\Omega} (1 - e^{\frac{j\pi}{\lambda_2}r^2}) \frac{r \times ds}{r^2} \\ \mathrm{slow} \ \mathcal{O}(n^3) \\ (\mathrm{Miyamoto-Wolf, \ Dauger,} \\ \mathrm{Cash, \ Cady, \ Barnett \ '21)} \\ \mathrm{high-order \ accurate} \end{split}$$

Two usual approaches for apertures/occulters: we propose a third...

(a) uniform 2D grid sampling

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ sub-pixel at best $\mathcal{O}(1/n^2)$

(b) line integral guadrature (c) high-order areal guadrature

2 1.5 0.5

× 10⁻³

direct summation $u^{\rm ap} = \frac{1}{2\pi} \int_{\partial \Omega} \left(1 - e^{\frac{i\pi}{\lambda z}r^2} \right) \frac{r \times ds}{r^2}$ slow $\mathcal{O}(n^3)$ (Miyamoto-Wolf, Dauger, Cash, Cady, Barnett '21) high-order accurate

2D nonuniform FFT fast $\mathcal{O}(n^2 \log n)$

(Barnett '21)

high-order accurate

Two usual approaches for apertures/occulters: we propose a third...

(a) uniform 2D grid sampling

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ sub-pixel at best $\mathcal{O}(1/n^2)$

(b) line integral guadrature (c) high-order areal guadrature

× 10⁻³ 2 1.5 1 0.5

direct summation $u^{ap} = \frac{1}{2\pi} \int_{\partial \Omega} \left(1 - e^{\frac{i\pi}{\lambda z}r^2} \right) \frac{r \times ds}{r^2}$ slow $\mathcal{O}(n^3)$ (Miyamoto-Wolf, Dauger, Cash, Cady, Barnett '21) high-order accurate

2D nonuniform FFT fast $\mathcal{O}(n^2 \log n)$

(Barnett '21)

high-order accurate

Define "high-order": error $\leq C/n^p$ for large algebraic order p (eg 10) or error $< Ce^{-\alpha n}$ exponential n = linear resolution

Areal quadrature over Ω

AQ is simply set of nodes (x_j, y_j) , j = 1, ..., N, with weights w_j , so

$$\iint_{\Omega} f(x, y) \, dx dy \; \approx \; \sum_{j=1}^{N} f(x_j, y_j) w_j$$

should be high-order accurate in N

Areal quadrature over Ω

AQ is simply set of nodes (x_j, y_j) , j = 1, ..., N, with weights w_j , so

$$\iint_{\Omega} f(x,y) \, dx dy \; \approx \; \sum_{j=1}^{N} f(x_j,y_j) w_j$$

should be high-order accurate in N

Eg: $\Omega =$ rectangle: $\label{eq:gauss-Legendre rule} product \ \mbox{Gauss-Legendre rule}$

Areal quadrature over $\boldsymbol{\Omega}$

AQ is simply set of nodes (x_j, y_j) , $j = 1, \ldots, N$, with weights w_j , so

$$\iint_{\Omega} f(x,y) \, dx dy \; \approx \; \sum_{j=1}^{N} f(x_j,y_j) w_j$$

should be high-order accurate in \boldsymbol{N}

Eg: $\Omega = \text{rectangle:}$ product Gauss–Legendre rule

AQ for "arbitrary" geometries?

- get from existing line (edge) integral quadrature rule, via dilation
- union of simple pieces + smooth transformations
- auto-generate from CAD/FEM formats? probably, not attempted

need precise (< 10^{-6}) geometry description; what format?

Jacobean scales w_i

Areal quadrature for starshades

Easy to build AQ for ideal starshade $N \sim 10^4 - 10^6$, err 10^{-6} , 20 lines MATLAB High-order interpolation from points giving petal apodization func A(r):

Areal quadrature for starshades

Easy to build AQ for ideal starshade $N \sim 10^4 - 10^6$, err 10^{-6} , 20 lines MATLAB High-order interpolation from points giving petal apodization func A(r):

complication: A(r) from optim design (eg NI2) rippled, A''(r) bang-bang! Non-ideal starshades:

• get from existing line (edge) integral quadrature rule, via dilation

fine, but not very efficient, $\mathit{N}\sim 10^8$ too large

- adding/subtracting a variable-width strip region to an ideal one?
- rigid motion of petals + AQs for gluing pieces? Add/sub defects...

We need to talk: precise geometry description, noise autocorr...

The fast algorithm: factorization

For all targets k = 1, ..., M, eval. quadrature rule for Frensel integral:

$$\begin{split} u_{k}^{\text{ap}} &\approx \frac{1}{i\lambda z} \sum_{j=1}^{N} e^{\frac{i\pi}{\lambda z} \left[(\xi_{k} - x_{j})^{2} + (\eta_{k} - y_{j})^{2} \right]} w_{j} \\ &= \frac{1}{i\lambda z} e^{\frac{i\pi}{\lambda z} (\xi_{k}^{2} + \eta_{k}^{2})} \cdot \sum_{j=1}^{N} e^{\frac{-2\pi i}{\lambda z} (\xi_{k} x_{j} + \eta_{k} y_{j})} \left(e^{\frac{i\pi}{\lambda z} (x_{j}^{2} + y_{j}^{2})} w_{j} \right) \\ &\stackrel{\nearrow}{\text{iii) post-multiply}} \quad \text{ii) 2D "type 3 NUFFT" i) pre-multiply} \\ \text{Three sequential steps (very simple, core < 10 lines of MATLAB)} \\ \text{Cost } \mathcal{O}(N + M + f^{2} \log f) \qquad \text{In practice: 10^{7} targets/sec on laptop} \\ \text{If targets on regular grid, use (faster) type 1 NUFFT Abbrev by "t3" and "t1"} \end{split}$$

The fast algorithm: factorization

lf

For all targets k = 1, ..., M, eval. quadrature rule for Frensel integral:

Recommended software library for NUFFTs: FINUFFT http://finufft.readthedocs.io C++/OpenMP; beats others by $10 \times (Barnett et al '19)$

Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals: (Cady '12; BDW

(Cady '12; BDWF as pulled from SISTER codebase)

Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals: (Cady '12; BDWF as

(Cady '12; BDWF as pulled from SISTER codebase)

Speed against BDWF, for million-point target grid:

i7 laptop

design	λ (m)	z (m)	f	m (petal)	total nodes	M (targets)	method	CPU time
NI2	5e-7	3.72e7	9.1	6000	n = 192000	10 ⁶ , grid	BDWF	5361 s
				400	$N{=}499200$		NUFFT t1 (ε =10 ⁻⁸)	0.076 s
HG	5e-7	8e7	24	60	n=2048	10 ⁶ , grid	BDWF	80.5 s
				60	$N{=}37440$		NUFFT t1 (ε =10 ⁻⁸)	0.042 s

Conclusions: same accuracy reached, 3-5 orders of magnitude faster

Results pictures

Smooth kite test:

NI2 ideal starshade:

Wavelength sweeps & SISTER modifications

Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop

Fig 6 Intensity (on \log_{10} scale indicated on the right) as a function of wavelength and target radius ρ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of 200 ρ values, the maximum over 300 angles is taken. The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed λ range.

Wavelength sweeps & SISTER modifications

Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop

Fig 6 Intensity (on \log_{10} scale indicated on the right) as a function of wavelength and target radius ρ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of 200 ρ values, the maximum over 300 angles is taken. The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed λ range.

Replacing BDWF by t3 in SISTER "PSF basis" task: hack, proof-of-principle

- 3149 shifts of 16×16 pupil grids \rightarrow group targets together!
- reduces run-time from 6.5 hours to 2.6 seconds

Movie (analytic starshade design)

Computed at around 10 frames/sec (close to real time):

Fun demo of complicated geometry

Fig 7 Koch fractal aperture diffraction example from Sec. 3.3. (a) shows the areal quadrature constructed by a union of about 67 million triangles. The color of each node (x_j, y_j) indicates its weight w_j using the scale on the right. The inset shows a zoom into the region shown, resolving individual nodes. (b) shows intensity (on \log_{10} scale indicated on the right) computed on a million-point grid by the NUFFT t1 method in under 5 seconds.

Conclusions

Much faster method for accurate ($<10^{-6})$ hard-edged Fresnel diffraction

 $\sim 10^7$ pupil plane targets/sec, almost indep of starshade geom

excels for large # targets. Crossover vs edge-integral for NI2 starshade: \sim 50 targets

- needs good (high-order) areal quadrature for occulter shape
 can be built from edge integral quadrature, other ways...
 - not automatic from CAD/FEM. What are your formats?...
- didn't mention: also fixed shadow-boundary issue for edge-integral

Conclusions

Much faster method for accurate ($<10^{-6})$ hard-edged Fresnel diffraction

 $\sim 10^7$ pupil plane targets/sec, almost indep of starshade geom

excels for large # targets. Crossover vs edge-integral for NI2 starshade: ~ 50 targets

- needs good (high-order) areal quadrature for occulter shape
 - can be built from edge integral quadrature, other ways...
 - not automatic from CAD/FEM. What are your formats?...
- didn't mention: also fixed shadow-boundary issue for edge-integral

Future / questions:

non-ideal (notches, shape variation) started

(Dumont, Shaklan)

- continuous phase variation? trivial to include
- probably useful for other "0-1" design problems: coronagraphs, etc

Code/docs: MATLAB, including all figures from paper, and SISTER modifications https://github.com/ahbarnett/fresnaq

