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Starshade design needs fast Fresnel diffraction from hard-edged (“0-1")
occulter, evaluated at many (eg 10°) target-plane (pupil) points

New method: has speed of FFT, but high accuracy of edge-integral
10%x faster than edge-integral methods in starshade context
Today:

Explain how works. Ingredients:
i) areal quadrature: accurate rule for 2D integral over occulter
ii) “nonuniform FFT": a black-box software library

Test results, demos
“Efficient high-order accurate Fresnel diffraction via areal quadrature and

the nonuniform FFT,” A. H. Barnett, J. Astron. Telesc. Instrum. Syst.
7(2), 021211 (21 pages), 2021. arxiv:2010.05978.

Code/doc:  https://github.com/ahbarnett/fresnaq


https://github.com/ahbarnett/fresnaq

Fresnel scalar diffraction setup and task

Region Q C R? is planar occulter (eg, starshade)
Unit-amplitude incident plane wave along z-axis: target plane field v

Babinet: w<(&,n) = 1—u(&,n),

Uap(g,"?) = )\i // e%[(ﬁ—x)z—&-(n—y)z] dxdy
¢ Az JJa

A = wavelength  z = downstream dist.

"0-1" source func. convolved w/ complex Gaussian
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Fresnel scalar diffraction setup and task

Region Q C R? is planar occulter (eg, starshade)
Unit-amplitude incident plane wave along z-axis: target plane field v

Babinet: w<(&,n) = 1—u(&,n),

u(&,m) = )\i // e [(E=x)?+(n—y)?] dxdy
¢ Az JJa

A = wavelength  z = downstream dist.

"0-1" source func. convolved w/ complex Gaussian

R
Fresnel number § := VI 5 to 20 for starshades R = max radius
z
4
Is Fresnel approx. good? yes! next term %5 ~ 107 even for scale models
Is scalar approx. good? yes for full scale; not perfect for scale models

Need u°c abs error < 107% o model intensity suppression 1010 q_ FLATIRON
rE
\ .




Two usual approaches for apertures/occulters: we propose a third. . .

(a) uniform 2D grid sampling

2D FFT (or pair)
convolution

fast O(n?log n)
(Mas, Lo, Junchang et al)
low-order O(1/n)
sub-pixel at best O(1/n?)

(b) line integral quadrature

o0

(c) high-order areal quadrature

%1073
25



Two usual approaches for apertures/occulters: we propose a third. . .

(a) uniform 2D grid sampling (b) line integral quadrature () high-order areal quadrature %103
; 25
o0 )
15
;
05
2D FFT (or pair) direct summation
. i 2
convolution uP =gk [ (1—ex:r) s
fast O(n?log n) slow O(n?)
(Mas, Lo, Junchang et al) (Miyamoto—Wolf, Dauger,
low-order O(1/n) Cash, Cady, Barnett '21)

sub-pixel at best O(1/n?) high-order accurate
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(a) uniform 2D grid sampling (b) line integral quadrature () high-order areal quadrature 103
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2D FFT (or pair) direct summation 2D nonuniform FFT
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as n-liogn
fast O(n?log n) slow O(n?) &
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sub-pixel at best O(1/n?) high-order accurate high-order accurate



Two usual approaches for apertures/occulters: we propose a third. . .

(a) uniform 2D grid sampling (b) line integral quadrature () high-order areal quadrature 1073
” 25
o0 ,
15
;
0.5
2D FFT (or pair) direct summation 2D nonuniform FFT
. ir 2 d
convolution uP =gk [ (1—ex:r) s fast O(n2 log n)
as n-logn
fast O(n?log n) slow O(n?) &
(Mas, Lo, Junchang et al) (Miyamoto—Wolf, Dauger, (Barnett '21)
low-order O(1/n) Cash, Cady, Barnett '21)
sub-pixel at best O(1/n?) high-order accurate high-order accurate

Define “high-order”: error < C/nP for large algebraic order p (eg 10)
or error < Ce™“" exponential n = linear resolution



Areal quadrature over €2

AQ is simply set of nodes (xj,y;), j=1,..., N, with weights w;, so

- node  weight 2
Sy 5

(shown

by color) 2

" 15

N
//Q f(x,y)dxdy ~ Y f(x,y,)w;
j=1

should be high-order accurate in N
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Areal quadrature over €2
AQ is simply set of nodes (x;,y;), j =1,..., N, with weights w;, so

o node  weight 25
Ty W,

(shown
by color) 2

z

N
//Q f(x,y)dxdy ~ Y f(x,y,)w;
j=1

should be high-order accurate in N

Eg: Q = rectangle:
product Gauss—Legendre rule
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AQ is simply set of nodes (x;,y;), j =1,..., N, with weights w;, so

node  weight 25
Y, -

. (shown
n \'{( by color) 2

should be high-order accurate in N

Eg: Q = rectangle:
product Gauss—Legendre rule

AQ for “arbitrary” geometries?

get from existing line (edge) integral quadrature rule, via dilation
union of simple pieces + smooth transformations Jacobean scales w;
auto-generate from CAD/FEM formats? probably, not attempted

need precise (< 107°) geometry description; what format?



Areal quadrature for starshades

Easy to build AQ for ideal starshade N ~ 10%-10°, err 1079, 20 lines MATLAB

0.12
0.1

0.08
0.06
0.04
0.02

0 5 10 15 20 25 30

x
complication: A(r) from optim design (eg NI2) rippled, A”(r) bang-bang!




Easy to build AQ for ideal starshade N ~ 10%-10°, err 1079, 20 lines MATLAB
High-order interpolation from points giving petal apodization func A(r):
‘ » -

- 0.12
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complication: A(r) from optiin design (eg NI2) rippled, A”(r) bang-bang!
Non-ideal starshades:
o get from existing line (edge) integral quadrature rule, via dilation

fine, but not very efficient, N ~ 108 too large
¢ adding/subtracting a variable-width strip region to an ideal one?
e rigid motion of petals + AQs for gluing pieces? Add/sub defects. ..

We need to talk: precise geometry description, noise autocorr. . .



For all targets k =1,..., M, eval. quadrature rule for Frensel integral:
N

. 1 )2 )2
ukp ~ I)\iz e)\z [( k—X;)°+(Mk—Y;) ] wj
— Eexz £k+nk) Z e f;rl gka+77kyj) (ekz(x +yJ ) J)
/ T N
iii) post-multiply i) 2D “type 3 NUFFT" i) pre-multiply

Three sequential steps (very simple, core < 10 lines of MATLAB)

Cost O(N + M + f2 log f) In practice: 107 targets/sec on laptop
If targets on regular grid, use (faster) type 1 NUFFT Abbrev by “t3" and “t1”


http://finufft.readthedocs.io

For all targets k =1,..., M, eval. quadrature rule for Frensel integral:
L s ] |
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T R eAz (Ek=x)"+(=yi)"] -
k l)\z J

— —em fk'H?k) Ze f:l (Exxj+nrYy)) (ekz(x +yJ) J)

iz
/ T N
iii) post-multiply i) 2D “type 3 NUFFT" i) pre-multiply

Three sequential steps (very simple, core < 10 lines of MATLAB)
Cost O(N + M + f2 log f) In practice: 107 targets/sec on laptop
If targets on regular grid, use (faster) type 1 NUFFT Abbrev by “t3" and “t1”

Recommended software library for NUFFTs: FINUFFT
http://finufft.readthedocs.io

C++/OpenMP; beats others by 10 (Barnett et al '19) fiNUFFT


http://finufft.readthedocs.io

Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals:

(@)

or abs diff in u*°(¢,0)

[u(€,0)

NI2 (n = 192000 bdry nodes): A = 5e-07 m, Z = 3.72e+07 m
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Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals:

(a)  NI2 (n = 192000 bdry nodes): A = 5e-07m, Z = 3.72e+07m  (b)
100 e et Tttty L S 10°
CI\IS(I;ELZIIUU) \&\\
t1-BDWF
102 | — — u-NSLI 102

|u°¢(&,0)], or abs diff in u*(€,0)

(Cady "12; BDWF as pulled from SISTER codebase)

HG (n = 2048 bdry nodes): X = 5e-07 m, Z = 8e+07 m

incident intensity 1
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Speed against BDWF, for million-point target grid: i7 laptop
design A (m) 2z (m) f m (petal) total nodes | M (targets) | method CPU time
NI2 Se-7 3.72¢7 9.1 | 6000 n=192000 | 106, grid BDWF 5361 s
400 N=499200 NUFFT t1 (e=10"%) | 0.076 s
HG Se-7 8e7 24 | 60 n=2048 10%, grid BDWF 80.5s
60 N=37440 NUFFT t1 (e=10"8) | 0.042s

Conclusions: same accuracy reached, 3-5 orders of magnitude faster




Smooth kite test:

(c) Az = 0.1: t1 occulter intensity |u™[>

NN
N
N

(£) Az = 0.01: t1 occulter intensity [u*[>

NI2 ideal starshade:

NI2: log, | |u|?, lambda.z=16 m?




Wavelength sweeps & SISTER modifications

Shadow depth study, 50 A values, takes 6 seconds: including AQ gen; laptop

(33) NI2 (N = 499200): max logy, [u°|*> on target radius p  (b) HG (N = 37440): max log;, [u°|* on target radius p
- 1 T ™ 6

0.4 0.45 0.5 0.55 0.6 0.2 0.4 0.6 0.8 1

A (pm) A (pm)
Fig 6 Intensity (on log, scale indicated on the right) as a function of wavelength and target radius p from the center,
for the two starshade designs (N12 and HG) of Fig. 5. At each of 200 p values, the maximum over 300 angles is taken.
The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed A range.
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Wavelength sweeps & SISTER modifications

Shadow depth study, 50 A values, takes 6 seconds: including AQ gen; laptop

(3a) NI2 (N = 499200): max logy, [u°|*> on target radius p  (b) HG (N = 37440): max log;, [u°|* on target radius p
- 1 T ™ 6

0.4 0.45 0.5 0.55 0.6 0.2 04 0.6 0.8 1
A (pm) A (pm)

Fig 6 Intensity (on log, scale indicated on the right) as a function of wavelength and target radius p from the center,
for the two starshade designs (N12 and HG) of Fig. 5. At each of 200 p values, the maximum over 300 angles is taken.
The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed A range.

Replacing BDWF by t3 in SISTER "PSF basis” task: hack, proof-of-principle
o 3149 shifts of 16 x 16 pupil grids — group targets together!
e reduces run-time from 6.5 hours to 2.6 seconds
j_ FLATIRON
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Computed at around 10 frames/sec (close to real time):

log,q intensity: Fresnel # = 11.182




(b) Az = 0.01: t1 aperture intensity [u®|*
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Fig 7 Koch fractal aperture diffraction example from Sec. 3.3. (a) shows the areal quadrature constructed by a union
of about 67 million triangles. The color of each node (z;,y;) indicates its weight w; using the scale on the right. The
inset shows a zoom into the region shown, resolving individual nodes. (b) shows intensity (on log;, scale indicated on

the right) computed on a million-point grid by the NUFFT t1 method in under 5 seconds.



Much faster method for accurate (< 107°) hard-edged Fresnel diffraction
~ 107 pupil plane targets/sec, almost indep of starshade geom
excels for large # targets. Crossover vs edge-integral for NI2 starshade: ~ 50 targets

needs good (high-order) areal quadrature for occulter shape
— can be built from edge integral quadrature, other ways. ..
— not automatic from CAD/FEM. What are your formats?. ..

didn’t mention: also fixed shadow-boundary issue for edge-integral


https://github.com/ahbarnett/fresnaq

Much faster method for accurate (< 107°) hard-edged Fresnel diffraction
~ 107 pupil plane targets/sec, almost indep of starshade geom
excels for large # targets. Crossover vs edge-integral for NI2 starshade: ~ 50 targets

needs good (high-order) areal quadrature for occulter shape
— can be built from edge integral quadrature, other ways. ..
— not automatic from CAD/FEM. What are your formats?. ..

didn’t mention: also fixed shadow-boundary issue for edge-integral

Future / questions:
non-ideal (notches, shape variation) started (Dumont, Shaklan)
continuous phase variation? trivial to include
probably useful for other “0-1" design problems: coronagraphs, etc

Code/docs: MATLAB, including all figures from paper, and SISTER modifications
https://github.com/ahbarnett/fresnaq


https://github.com/ahbarnett/fresnaq



