Science Enabled by The Roman Galactic Exoplanet Survey

Samson A. Johnson

Matthew T. Penny, B. Scott Gaudi, Roman GES-SIT

NASA Exoplanet Explorers Science Series

2021-02-12

- Overview of survey and microlensing
- Earth-analogs in the Habitable Zone
- Free-floating planets

- Overview of survey and microlensing
- Earth-analogs in the Habitable Zone
- Free-floating planets

Nancy Grace Roman – first NASA Chief of Astronomy

The Nancy Grace Roman Space Telescope (Roman)

- Mission in Phase C (Final Design and Fabrication) as of 03/2020
- Passing Design Reviews, 2/3 flight detectors, on track to launch late 2026
- Cosmology, exoplanets (microlensing/coronography), general observing

The Roman Galactic Exoplanet Survey

The first space-based microlensing survey of the Galactic Bulge

"The exoplanet mission that nobody asked for."-overheard from a senior NASA scientist

Example microlensing events

Perceived weaknesses of microlensing

- Microlensing events are transient signals, do not repeat
- Microlensing planets can't be followed up or characterized
- Microlensing is hard to understand/steep learning curve

Strengths of microlensing

- Microlensing is sensitive to planets with large orbits
- Microlensing can detect planets throughout the Galaxy
- Microlensing surveys produce robust statistics

CURRENT *Roman* survey parameters

Survey details • 0.28 deg² FOV, 7 fields $\rightarrow \sim 2 \text{ deg}^2$ total

- Six 72-day seasons
 ~ 5 year baseline
- 15 min cadence in wide infrared bandpass
 ≤12 hr cadence in bluer bandpass
- 10⁸ stars, >30,000 microlensing events

ROMAN SPACE TELESCOPE

R.OMAN SPACE TELESCOPE

R.OMAN SPACE TELESCOPE

- Overview of survey and microlensing
- Earth-analogs in the Habitable Zone
- Free-floating planets

The Frequency of Earth-Analogs

- Important input for designing future direct im missions that can detect and characterize pot habitable planets.
- Currently best estimate(s) are from Kepler
 - Earth-analogs on edge of *Kepler* sensitivity function
 - Relies on extrapolation from shorter-period/larger-radii planets

HZ and microlensing

- Habitable Zone (Kopparapu+ 2013)Function of host mass, age, etc.
- Einstein Ring Radius
- Peak sensitivity to planets
- Depends on host (lens) star mass
- Function of lens/source distance

- Overview of survey and microlensing
- Earth-analogs in the Habitable Zone
- Free-floating planets

Free-floating planetary mass objects (FFPs)

could be lowest mass stars formed

could be formed in disks and later be ejected

Evidence for free floating planets

Evidence for free floating planets

What will FFPs look like to Roman?

What can *Roman* teach us about free-floating planets?

- *Roman* will improve on previous limits
- Roman will test predictions from planet formation theories
- ~250 FFP events assuming fiducial mass function

Key Takeaways

- *Roman* will conduct the first space-based microlensing survey
- Survey will provide exoplanet demographics statistics otherwise unattainable
- Will complement our current picture of planets in the Galaxy

Further prospects

- Combining Roman with Kepler
 - Interpolation, not extrapolation for Earth-analog frequency
 - Complex sensitivity function
 - different host-star populations
 - different planet populations?
 - Mass-radius relationship important
- Ultimately, we want to combine as much information as possible in exoplanet demographics

Other Considerations

Understanding <i>Roman's</i> sensitivity function	 Changes in galactic model (e.g. bar angle) will impact lens distributions Developing in-house Galactic Population Synthesis model A. Aronica (OSU), M. Huston (Penn State), M. Penny (LSU) 	
Microlensing event rates uncertain in a subset of likely <i>Roman</i> fields due to dust	 Being mapped by precursor near-infrared microlensing surveys (e.g, Schvartzvald+2016, PRIME) 	A. Aronica OSU Senior
Survey design not finalized	 Input sought from the general community on all Core Community Surveys Survey design hinges on mission design (e.g., slew and settle times change) 	d again)

More likely to measure the true mass of Earth-analog systems

Microlensing is sensitive to the mass ratio between the planet and the host star

Use 4.5-year survey-baseline to measure lens-source separation (μ_{rel})

Planets with higher mass (brighter) host stars more likely to have μ_{rel} measured

Bhattacharya et al., 2018

Finite Source Effects in a nutshell

Fiducial mass function adapted from Cassan et al. 2012

$$\frac{0.24}{\text{dex}^2} \left(\frac{m_p}{95M_{\oplus}}\right)^{-0.74} \text{ for } M_p > 5 M_{\oplus}$$
$$\frac{2}{\text{dex}^2} \qquad \text{for } M_p > 5 M_{\oplus}$$

 d^2N

 $\overline{d \log m_p d \log a}$

Not just bound planets, but free-floating ones too!

R.O.MAN

What can *Roman* teach us about free-floating planets?

- *Roman* will improve on previous limits
- Roman will test predictions from planet formation theories
- ~250 FFP events assuming fiducial mass function

Scaling θ_E and t_E

$$\theta_E \approx 700 \mu as \left(\frac{M}{0.5M_{\odot}}\right)^{\frac{1}{2}} \approx 30 \mu as \left(\frac{M}{M_J}\right)^{\frac{1}{2}} \approx 2 \mu as \left(\frac{M}{M_{\oplus}}\right)^{1/2}$$
$$t_E \approx 25 days \left(\frac{M}{0.5M_{\odot}}\right)^{\frac{1}{2}} \approx 1 day \left(\frac{M}{M_J}\right)^{\frac{1}{2}} \approx 1.5 hours \left(\frac{M}{M_{\oplus}}\right)^{1/2}$$

Mission design changes

	IDRM	DRM1	DRM2	AFTA	WFIRST Cycle 7
Reference	Green et al. (2011)	Green et al. (2012)	Green et al. (2012)	Spergel et al. (2015)	1,2
Mirror diameter (m)	1.3	1.3	1.1	2.36	2.36
Obscured fraction (area, %)	0	0	0	13.9	13.9
Detectors	7×4 H2RG-10	9×4 H2RG-10	7×2 H4RG-10	6×3 H4RG-10	6×3 H4RG-10
Plate scale ("/pix)	0.18	0.18	0.18	0.11	0.11
Field of view (deg^2)	0.294	0.377	0.587	0.282	0.282
Fields	7	7	6	10	7
Survey area (deg ^s)	2.06	2.64	3.52	2.82	1.97
Avg. slew and settle Time (s)	38	38	38	38	83.1
Orbit	L2	L2	L2	Geosynchronous	L2
Total Survey length (d)	432	432	266	411**	432
Season length (d)	72	72	72	72	72
Seasons	6	6	3.7	6	6
Baseline mission duration (yr)	5	5	3	6	5
Primary bandpass (μ m)	1.0–2.0 (W149)	1.0–2.4 (W169)	1.0–2.4 (W169)	0.93–2.00 (W149)	0.93-2.00 (W149)
Secondary bandpass (μ m)	0.74–1.0 (Z087)	0.74–1.0 (Z087)	0.74–1.0 (Z087)	0.76–0.98 (Z087)	0.76-0.98 (Z087)

Event rate weighting

$$w_i = 0.25 \operatorname{deg}^2 f_{1106WFIRST} \Gamma_{\operatorname{deg}^2} T_{sim} u_{0,max} \quad \frac{2\mu_{rel,i}\theta_{E,i}}{W}$$

$$W = \sum_{i} 2\mu_{rel,i}\theta_{E,i}$$

