

Modeling Starshade Petal Dimensional Stability

Starshade to TRL 5 (S5) Starshade Science and Industry Partnership (SIP) 12/17/2020

Opterus Team:

Thomas Murphey (PI & CEO) – tmurphey@opterusrd.com Erik Pranckh (Director of Business Development) – erik@opterusrd.com Patrick Rodriguez (Composites Lead) – patrick@opterusrd.com

Fixed Price Research & Development Subcontract Subcontract No. 1631978

Overview

- Key Technology Gaps
- Error Budget Reduction
- Work Scope
 - Preliminary Analyses
 - Material Testing
 - Petal Creep Predictions
- Summary

* jpl.nasa.gov

Addressing Key Technology Gaps

- Deployment Accuracy and Shape Stability
 - Combined analysis/test approach
 - Targeting estimates on Starshade petal dimensional stability
 - Petal dimensional stability driven by material dimensional stability

Error Budget Reduction

- Opterus work addresses Petal Shape
 - KPP 5 (≤ ± 40 μm)
 - KPP 6 (≤ ± 20 μm)
- Pre-launch and on-orbit shape stability are relevant
- Efforts focus on pre-launch shape stability of prototype petal design

* Starshade to TRL5 (S5) TDP

Work Scope

Goal: Evaluate Starshade petal dimensional stability as a function of materials and stowage

Technical Progression

- 1. Preliminary Petal Edge Analyses
- 2. Coupon Level Material Testing
- 3. Petal Stowage Creep Predictions

Preliminary Petal Edge Analyses

- How does material selection influence time-dependent response to stowage?
- CFRP laminates and epoxy adhesive are time-dependent!
- Lots of CFRP resin systems out there...how does varying the resin impact time-dependent deformations?
 - Neat resin?
 - Toughened?
 - Filled?
 - Toughened and filled?

* 2019 Optical Edge SPIE Presentation - Advancements in precision edges for a starshade external occulter

#	Resin Identifier	Resin Description	Nanosilicate	Toughener
1	F7C	Pure epoxy	No	No
2	F7	Epoxy with toughener	No	Yes
3	Epoxy (38% NS)	Epoxy with nano-silicates, no toughener	38%	No
4	F7 (10% NS)	Epoxy with toughener and nano-silicates	10%	Yes
5	F6	Cyanate ester	N/A	N/A

Preliminary Petal Edge Analyses

Preliminary Edge Analyses: Results & Outcomes

#	Resin Identifier	Resin Description	Tip Displacement (m)	Edge Elastic Strain (με)	Edge Creep Strain (με)	CFRP Visco.
1	F7C	Neat epoxy	0.121	286.4	0.274	On
2	F7	Epoxy w/ T	0.121	286.4	0.274	On
3	F3GHT	Epoxy w/ NS	0.120	284.6	0.273	On
4	F7 10%	Epoxy w/ T and NS	0.122	289.7	0.277	On
5	F6	Neat cyanate ester	0.120	284.3	0.272	On
6	F7	Epoxy w/ T	0.122	283.8	0.274	Off
*T = toughener. NS = nanosilicates, all reported values correspond to 5 minute stow (i.e. load still applied)						

Key Outcomes

- 1. Time-dependent deformations small compared to elastic deformations
- 2. Time-dependent deformations minimally influenced by changing CFRP resin
- 3. Time-dependent deformations dominated by epoxy bond lines (EA9394)

Coupon Level Material Testing

- CFRP time-dependency has little impact on edge creep under load
- What about changes in environment?
 - Time
 - Temperature
 - Moisture
- Candidate materials narrowed for testing
 - Toughened epoxy (F7)
 - Cyanate ester (F6)
 - Epoxy adhesive (EA 9394)

Coupon Level Material Testing

- Testing carried out over several weeks
 - How much do the polymers expand/contract?
 - How time dependent is that response?
- One coupon tested per material (3)
- Multiple thermal cycles, single moisture exposure

Coupon Level Material Testing

- What's the coupon test data for?
 - Predictions of coupon response, _____ using datasheet material properties, compared to test data
 - Predictions tuned to accurately capture material life history
- Coupon testing agrees with edge analyses
 - EA 9394 adhesive relatively unstable compared to CFRP resins
 - Cyanate ester most stable in terms of time/temp & moisture

- Coupon test results informed the petal model
- All CFRP petal components and epoxy adhesive bondlines modeled
- Multiple time/temp stowage scenarios simulated
- How shape stable is the petal as a function of time/temp stowage?

* Starshade Technology Development Activity Milestone 5A: Verify Petal Pre-launch Accuracy

* Starshade Technology Development Activity Milestone 5A: Verify Petal Pre-launch Accuracy

- Three time/temp stowage sequences simulated
 - 2 weeks at room temp (20 °C)
 - 1 year at room temp (20 °C)
 - 2 weeks at 40 °C
- How much does the edge creep during stowage?
- How much creep is recovered?

Remaining Edge Creep after Deployment

Analysis Case	Max Predicted Residual Edge Creep (µm)
Two Weeks at Room Temperature (20 °C)	0.158
One Year at Room Temperature (20 °C)	0.415
Two Weeks at 40 °C	2.93

Key Outcomes

- Petal edge creep has a clear time and temperature dependency
- Short times/low temps = more elastic response = more recovery
- Long times/high temps = more viscous response = less recovery

Opterus SIP Summary

Goal: Evaluate Starshade petal dimensional stability as a function of materials and stowage

- Edge analyses showed CFRP creep orders of magnitude smaller than adhesive creep
- Coupon testing of candidate materials supplemented edge analyses
 - Most time-dependent material = epoxy adhesive (EA 9394)
 - Least time-dependent material = cyanate ester CFRP resin system
- Petal stowage simulations, using test validated material properties, predicted residual edge deformations after deployment on the single micron scale

Remaining Edge Creep after Deployment					
Analysis Case	Max Predicted Residual Edge Creep (µm)				
Two Weeks at Room Temperature (20 °C)	0.158				
One Year at Room Temperature (20 °C)	0.415				
Two Weeks at 40 °C	2.93				
I WO WEEKS at TO C	2.75				

Opterus Team:

Thomas Murphey (PI & CEO) – tmurphey@opterusrd.com Erik Pranckh (Director of Business Development) – erik@opterusrd.com Patrick Rodriguez (Composites Lead) – patrick@opterusrd.com

> Fixed Price Research & Development Subcontract Subcontract No. 1631978